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1 Introduction

Let f be a map from the Riemann sphere Ĉ to itself. In complex dynamics, one investigates the
behaviour of the family of iterates {f◦n : n ∈ N}, where f◦n = f ◦f ◦ . . .◦f is the n-fold composition
of f . The study of iterated maps gives rise to arguably some of the most beautiful mathematics
through its intimate links with fractal geometry. In this report, we will prove the No Wandering
Domains Theorem, which was first proved by Sullivan [1]. This says that when f is rational with
degree ≥ 2 (degree being the larger polynomial degree between the numerator and denominator), a
sufficiently nice connected open set eventually returns to itself under the family of iterates of f .

Theorem 1.1 (No Wandering Domains). A rational map f : Ĉ → Ĉ with degree d ≥ 2 has no
wandering domains.

In Section 2, we briefly run through the definitions required to understand the statement of
Theorem 1.1. The precise definition of a wandering domain is given, of course. In Section 3, we
introduce quasiconformal maps and Beltrami forms, and state the celebrated Measurable Riemann
Mapping Theorem which is central to the proof of Theorem 1.1. We proceed with the proof in
Section 4. Our treatment follows [2] and [3], although we elaborate more at times. [4] was also
consulted as a reference.

2 Fatou and Julia sets

We give just enough background on Fatou and Julia sets to understand the statement of Theorem
1.1.

Definition 2.1. Let f : Ĉ → Ĉ be a nonconstant holomorphic map. A periodic point of f with
period n is a point z such that f(z), (f ◦ f)(z), . . . , f◦(n−1)(z) 6= z, but f◦n(z) = z. The multiplier
of a periodic point z with period n is the number (f◦n)′(z).

Definition 2.2. The Julia set of f , denoted J(f), is the closure of the set of periodic points of f
with multiplier having modulus > 1. The Fatou set of f is F (f) = Ĉ \ J(f).

Note that this implies F (f) is open in Ĉ. We remark that these are one of many equivalent
definitions of the Fatou and Julia sets of f , and we have chosen this one to keep things simple.

If z belongs to the interior of J(f) with period n, then from the definition we see that |f◦n(w)−
f◦n(z)| = |f◦n(w)− z| > |w− z| for nearby points w. Thus, points near z are repelled from z as we
iterate f , leading to chaotic behaviour near z. The converse holds true in general: points in F (f)
are well-behaved under the iterates of f . Now comes the obligatory picture of J(f) and F (f)...
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Figure 1: Fatou and Julia sets for f(z) = z2 + c where c = −0.755 + 0.05i (left) and
c = −0.755 + 0.0575i (right), in a neighbourhood of the origin. The black region is J(f), and the

colours represent divergence rate of points in F (f) to ∞ ∈ Ĉ. Source:
https://mathlair.allfunandgames.ca/julia2.php.

Here are two key properties of F (f) and J(f), which are easier proved using alternative defini-
tions.

Lemma 2.3. The sets F (f) and J(f) are invariant under iterations of f . That is, a point z ∈ Ĉ
belongs to F (f) (resp. J(f)) if and only if f(z) belongs to F (f) (resp. J(f)).

Lemma 2.4. For a rational map of degree ≥ 2, the Julia set is nonempty.

Another reason why the Fatou set is considered ‘nice’ is due to the following.

Lemma 2.5. For every Fatou component U (i.e. connected component of the Fatou set) of a
rational map f , f(U) is another Fatou component, in fact the whole component.

Proof. Since f is holomorphic (thus an open map) and U is connected and open, f(U) is also
connected and open. In particular f(U) is open in F (f) since f(U) ⊆ F (f). We also have U ∩∂U =
∅, so U = Ū ∩ F (f) and

f(U) = f(Ū) ∩ f(F (f)) = f(Ū) ∩ F (f), (1)

using the invariance of F (f) (Lemma 2.3). But Ū is compact, being a closed subspace of Ĉ. So
f(Ū) is also compact, hence closed since Ĉ is Hausdorff. By (1), f(U) is closed in F (f), in addition
to being open and connected. Hence it is a whole connected component of F (f).

Definition 2.6. Let U be a Fatou component of f . If there exists n < ∞ such that f◦n(U) = U ,
then U is called eventually periodic. Otherwise, f◦n(U) ∩ U = ∅ for all n (by Lemma 2.5), and
U is called a wandering domain.

Now we can make sense of Theorem 1.1, which in other words says that every Fatou component
of a rational map of degree ≥ 2 is eventually periodic. This is by no means obvious, and perhaps
surprising: such a map only has a handful of fixed points if any, but every Fatou component is
a ‘fixed component’, at least under some iterate of the map. Theorem 1.1 applies for both maps
displayed in Figure 1.
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3 Quasiconformal maps and Beltrami forms

The proof of Theorem 1.1 heavily relies on Beltrami forms and the Measurable Riemann Mapping
Theorem, which both arise in the theory of quasiconformal maps. We introduce these ideas with
some intuition.

Definition 3.1. A conformal structure on a smooth manifold M is an equivalence class of
Riemannian metrics on M , where two metrics g and h are conformally equivalent if g = λh for
some smooth positive function λ : M → R.

A conformal structure is an angle-measuring device at each point on a manifold. A metric
would have also done the job, but the equivalence relation of conformality allows us to forget about
distances, areas, etc.

Definition 3.2. LetM and N be smooth manifolds with conformal structures [g] and [h] respectively,
where g and h are representative metrics. A map f : M → N is conformal if the pullback
metric f∗h on M is conformally equivalent to g wherever defined. If such a map exists and is a
diffeomorphism, we call M and N conformally isomorphic.

We restrict our attention to surfaces, i.e. real dimension 2. The following fact is imperative to
mention.

Theorem 3.3. On a surface, there is a one-to-one correspondence between conformal and complex
structures.

Before generalising, consider when the surface is an open set U ⊆ C. How do we specify a
conformal structure on U? By definition, it suffices to provide a metric g on U , as its conformal
class will be our conformal structure. Actually, we only need to specify the unit ball of the norm
induced by g (in each tangent space), as then g is recovered by the polarisation identity.

Taking this further: for each p ∈ U , the unit ball of g|TpU is an ellipse in TpU ∼= C. This has
locus |az + bz̄| = 1 for some a, b ∈ C, or |z + µz̄| = c for some µ, c ∈ C.1 Allowing p ∈ U to vary,
µ and c become smooth functions of p. Now let h be a metric which is conformally equivalent to g.
Then h = λg for a smooth λ : U → R+, so the unit circle of h in TpU is |z+µ(p)z̄| = λ(p)c(p), with
λ(p)c(p) smooth in p. From this, we see that the function µ is an invariant of the conformal class.
Conversely, if two metrics generate unit balls |z + µ(p)z̄| = c1(p) and |z + µ(p)z̄| = c2(p) at TpU ,
then these ellipses are concentric, so the metrics differ only by a positive multiple at each point.2

Thus, they are conformally equivalent.

The upshot is as follows. To give a conformal structure on U , it is enough to specify a smooth
function µ : U → C. This µ describes the field of concentric ellipses at the tangent spaces, i.e. the
unit circles of its representing metrics. In particular it contains information about their orientation
and eccentricity, e.g. the eccentricity of the ellipses at TpU is 1+|µ(p)|

1−|µ(p)| if |µ(p)| < 1, and 1−|µ(p)|
1+|µ(p)| if

|µ(p)| ≥ 1.

Given a domain U ⊆ C and a smooth function µ : U → C, denote by Uµ the surface U with
conformal structure described by µ. The next theorem tells us when a function f : Uµ → Vν between
open sets of C is conformal. A special case is when Vν = C0, the complex plane with the standard
conformal structure. Here 0 is the zero function.

1If a = 0, just take µ = 0.
2Positivity comes from the positive-definiteness of Riemannian metrics.
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Theorem 3.4. A smooth function f : Uµ → Vν is conformal if ∂f/∂z 6= 0 and

∂f

∂z̄
+ ν(f(z))

∂f̄

∂z̄
= µ(z)

(
∂f

∂z
+ ν(f(z))

∂f̄

∂z

)
, ∀z ∈ U. (2)

If Vν = C0, (2) reduces to the Beltrami equation:

∂f

∂z̄
= µ(z)

∂f

∂z
, ∀z ∈ U. (3)

Proof. We prove (3); the idea is the same for (2). So ν = 0, and the ellipses |w+ νw̄| = |w| = const
are circles. By our previous discussion and the definition of a conformal map, we want to show that
circles in Tf(z)V are pulled back to ellipses |w + µ(z)w̄| = const in TzU . Equivalently, it suffices to
show that for all z ∈ U the derivative df takes the ellipse of tangent vectors |w+ µ(z)w̄| = const in
TzU to a circle |df(w)| = const in Tf(z)C ∼= C. This indeed holds, since for z ∈ U and w ∈ TzU we
have

|df(w)|2 =

∣∣∣∣w∂f∂z + w̄
∂f

∂z̄

∣∣∣∣2 =

∣∣∣∣∂f∂z
∣∣∣∣2 ∣∣∣∣w +

∂f/∂z̄

∂f/∂z
w̄

∣∣∣∣2 =

∣∣∣∣∂f∂z
∣∣∣∣2 |w + µ(z)w̄|2 = const.

Definition 3.5. If f : Uµ → C0 satisfies (3), we call the same map f : U0 → C0 µ-quasiconformal
when the domain has the standard conformal structure, and we say f satisfies the Beltrami
equation for µ.

For open sets in C, we see that a single function µ defines a conformal structure. Can we
proceed similarly for a Riemann surface X, i.e. define a new conformal structure on X by assigning
functions µ : ϕ(U) → C to each chart (U ⊆ X,ϕ : U → C), and pulling back the conformal
structures on ϕ(U) induced by µ to get local conformal structures on U? Suppose we have assigned
such functions; let us derive the constraints. Let z, w be local coordinates on overlapping patches
of X, and suppose the conformal structures in the charts are given by µ(z) and ν(w) respectively.
To ensure the result is still a Riemann surface, the transition map z 7→ w(z) must be holomorphic.
So it must be µ-ν-conformal, and hence by (2) we can impose the requirement that

ν(w(z)) = µ(z)
∂w

∂z

∂z̄

∂w̄
, (4)

since ∂w/∂z̄ = 0 = ∂w̄/∂z. This condition on the functions µ, ν therefore ensures they define a
consistent conformal structure on X (hence complex structure by Theorem 3.3). The next definition
is now natural.

Definition 3.6. A Beltrami form on a surface X is a collection of smooth functions B each
defined on an open set of X, such that the transition maps between µ, ν ∈ B satisfy (4).

An equivalent, more convenient definition is as follows. The equivalence can be seen by ‘moving
all the w’s to the left-hand side’ in (4).

Definition 3.7. A Beltrami form on X is a tensor field over X locally represented by µ =
µ(z) dz̄ ⊗ ∂

∂z for a smooth function µ(z). Sometimes µ is referred to as a (−1, 1)-tensor field by the
way it transforms.
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In summary, a Beltrami form µ on X defines a new Riemann surface homeomorphic to X, but
in general, conformally inequivalent. Denote the new Riemann surface by Xµ. We will focus only on
the case X = Ĉ, in which case Ĉµ is actually conformally isomorphic to Ĉ0 by the Uniformisation
Theorem.3

Remark. From here on, we allow objects to be merely measurable. A careful treatment is too
cumbersome, but any subtleties will not cause issues in the present discussion anyway. In essence,
we now allow things to be defined up to sets of zero measure, and everything from here on should
be suffixed with ‘a.e.’ where appropriate. Previous definitions and theorems should also be replaced
with their measurable equivalents.

We now state the Measurable Riemann Mapping Theorem (MRMT), due to Alfohrs and Bers.
It asserts the existence of a distinguished conformal map Ĉµ → Ĉ0 subject only to mild conditions
on µ. Even more, it says that these maps for nearby µ are related by a ‘holomorphic variation’:

Theorem 3.8 (MRMT). Let µ be a measurable Beltrami form on Ĉ with ess sup |µ| < 1.4 There is
a unique L1 conformal homeomorphism f : Ĉµ → Ĉ0 satisfying the Beltrami equation ∂f

∂z̄ = µ(z)∂f∂z ,
and fixes 0, 1,∞.5 Moreover, the map ft(z) obtained this way for the Beltrami form tµ (for small
enough complex t) is holomorphic in t for fixed z.

As above, we call this function f : Ĉ0 → Ĉ0 µ-quasiconformal when the domain has the usual
conformal structure on Ĉ. Note that by setting t = 0 in the second part of the theorem, f0 is the
identity map on Ĉ.6

4 Proof of the No Wandering Domains theorem

The proof of Theorem 1.1 is an unexpected yet intriguing application of Beltrami forms and the
MRMT. In addition to this, the proof strategy seems rather arbitrary, making its execution all the
more surprising.

We first give a sketch. For a Riemann surface X, denote by M(X) the C-vector space of
essentially bounded Beltrami forms on X. Let M(Ĉ)f ⊆ M(Ĉ) be the subspace of f -invariant
Beltrami forms on Ĉ, i.e. those µ̂ ∈ M(Ĉ) such that f : Ĉµ̂ → Ĉµ̂ is conformal. According to (2)
with µ = ν = µ̂ and noting that ∂f/∂z̄ = 0 by holomorphicity, we have µ̂ ∈M(Ĉ)f whenever

µ̂(f(z))f ′(z) = µ̂(z)f ′(z) a.e. (5)

(We only need to care about one of the two charts on Ĉ since the uncovered part has zero measure.)
For a contradiction, suppose f has a wandering domain U . We will construct linear maps

M(U)→M(Ĉ)f → TfRatd, (6)

where Ratd is the set of rational maps of degree d on Ĉ. These have 2d + 2 coefficients and are
scale-invariant, so Ratd is open in CP2d+1, making it a (2d + 1)-dimensional complex manifold.

3Ĉ0 is S2 with the conformal structure induced by the usual two charts, both with the usual conformal structure
on C.

4More precisely, if we pick one of the two charts on Ĉ and write µ = µ(z) dz̄⊗ ∂
∂z

in that chart, then ess supz |µ(z)| <
1.

5These derivatives are L1 distributional derivatives.
6See Homework 2, Problem 3a.
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Elements of TfRatd are holomorphic sections of the bundle f∗T Ĉ over Ĉ, i.e. the fiber over z is
Tf(z)Ĉ (this will not be proved).

We will show that (6) restricts to an injective map on an infinite-dimensional linear subspace V
of M(U), which yields a contradiction since the codomain TfRatd is finite-dimensional.

The following lemma helps simplify things. We omit the proof, which is a little technical.

Lemma 4.1 ([5]). If U is a wandering domain of f , then for all sufficiently large n, f◦n(U) is
simply connected, and f maps f◦n(U) homeomorphically onto f◦(n+1)(U).

Proof of Theorem 1.1. Assume f has a wandering domain U ⊆ F (f). By Lemma 4.1, sufficiently
high iterates of U under f are simply connected, so we may assume U is simply connected from
the outset. First, we define an injective linear map M(U) → M(Ĉ)f . For each µ ∈ M(U), define
µ̂ ∈M(Ĉ)f by ‘distributing’ µ over almost all of Ĉ in the following way:

(i) Set µ̂ = µ on U .

(ii) On each forward iterate f◦n(U), recursively set µ̂(z) = µ̂(w)f ′(w)/f ′(w) where w = f−1(z) ∈
f◦(n−1)(U) (this is well-defined since f maps all large iterates of U bijectively by Lemma 4.1).

(iii) On each backward iterate f◦(−n)(U) = (f◦n)−1(U), recursively set µ̂(z) = µ̂(f(z))f ′(z)/f ′(z).

(iv) Set µ̂ = 0 elsewhere.

The assumption that U is wandering is crucial, because for µ̂ to be well-defined the iterates f◦n(U)
must be disjoint. Moreover, this defines µ̂ on all of Ĉ except at the points z where some iterate
of z is a critical point of f , as this causes division by zero in (ii) and (iii).7 These points form
a countable set whose measure is therefore null, so we leave µ̂ undefined there; we only aim to
construct a measurable Beltrami form.

Because µ is essentially bounded, so is µ̂ (as |f ′/f | = |f/f ′| = 1 for (ii) and (iii)). Moreover,
µ̂ is manifestly f -invariant since it satisfies (5) by construction. Hence µ̂ ∈ M(Ĉ)f . By (i), this
assignment of µ̂ to each µ ∈M(U) is injective. It is also linear, as is easily seen from (i)-(iv).

Now that we have an injective linear map M(U)→ M(Ĉ)f , we complete (6) by constructing a
linear map M(Ĉ)f → TfRatd. Given µ̂ ∈M(Ĉ)f , essential boundedness implies ess sup |tµ̂| < 1 for
small enough t. By Theorem 3.8, there is a one-parameter family of conformal homeomorphisms
φt : Ĉtµ̂ → Ĉ0 which fix 0, 1,∞, satisfy the Beltrami equation for tµ̂, and depend holomorphically
on t for fixed z ∈ Ĉ. The criterion (5) for f -invariance is linear in µ̂, so the f -invariance of µ̂ implies
f -invariance of tµ̂. Thus,

φt ◦ f ◦ φ−1
t : Ĉ0

φ−1
t−→ Ĉtµ̂

f−→ Ĉtµ̂
φt−→ Ĉ0

is a composition of conformal maps, hence is conformal. So φt ◦ f ◦ φ−1
t is a rational map on Ĉ

with the same degree as f for each t, and the dependence on t is holomorphic. Let wµ̂ be the first
variation of this family:

wµ̂(z) =
∂

∂t

∣∣∣
t=0

(φt ◦ f ◦ φ−1
t )(z), (7)

7Specifically, for z ∈ f◦(−n)(U) (resp. f◦n(U)), µ̂(z) is undefined if some forward (backward) iterate of z is a
critical point of f .
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which we identify with an element of TfRatd. (We can treat the expression on the right as a
complex-valued function, in which case it should really be multiplied by ∂

∂z .) Declare the second
map in (6) to be

M(Ĉ)f → TfRatd, µ̂ 7→ wµ̂.

To see that this is linear, consider the vector field on Ĉ defined by

vµ̂ ∈ Γ(T Ĉ), vµ̂(z) =
∂

∂t

∣∣∣
t=0

φt(z). (8)

(Same comment about treating the right-hand side as a function.) Then:

• wµ̂ depends linearly on vµ̂: by writing φt(z) = φ(t, z) and recalling that φ(0, z) = φ−1(0, z) =

z (see the end of Section 3) we compute by the chain rule

wµ̂(z) =
∂

∂t

∣∣∣
t=0

(φt ◦ f ◦ φ−1
t )(z) =

∂

∂t

∣∣∣
t=0

φ(t, f(φ−1(t, z)))

=
∂

∂t

∣∣∣
t=0

φ(t, f(φ−1(0, z))) +
∂

∂t

∣∣∣
t=0

φ(0, f(φ−1(t, z)))

=
∂

∂t

∣∣∣
t=0

φ(t, f(z)) +
∂

∂t

∣∣∣
t=0

f(φ−1(t, z))

= vµ̂(f(z)) + f ′(φ−1(0, z)) · ∂
∂t

∣∣∣
t=0

φ−1
t (z)

= vµ̂(f(z)) + f ′(z) · ∂
∂t

∣∣∣
t=0

φ−t(z)

= vµ̂(f(z))− f ′(z)vµ̂(z). (9)

• vµ̂ depends linearly on µ̂: write vµ̂(z) =
(
∂
∂t

∣∣∣
t=0

φt(z)
)

∂
∂z , now treating the expression in

parentheses as a C-valued function in z. Defining ∂̄ on ∂
∂z -vector fields by ∂̄

(
g ∂
∂z

)
= (∂̄g) dz̄⊗

∂
∂z , we compute

∂̄vµ̂ =
∂

∂z̄

(
∂

∂t

∣∣∣
t=0

φt(z)

)
dz̄ ⊗ ∂

∂z
=

∂

∂t

∣∣∣
t=0

(
∂

∂z̄
φt(z)

)
dz̄ ⊗ ∂

∂z

=
∂

∂t

∣∣∣
t=0

(
tµ̂(z)

∂

∂z
φt(z)

)
dz̄ ⊗ ∂

∂z
(φt satisfies Beltrami eqn. for tµ̂)

=

[(
µ̂(z)

∂

∂z
φt(z)

) ∣∣∣
t=0

+

(
tµ̂(z)

∂

∂t

∂

∂z
φt(z)

) ∣∣∣
t=0

]
dz̄ ⊗ ∂

∂z

=

(
µ̂(z)

∂

∂z
z

)
dz̄ ⊗ ∂

∂z
= µ̂(z) dz̄ ⊗ ∂

∂z
= µ̂. (10)

In fact, vµ̂ is the unique solution to ∂̄v = µ vanishing at 0, 1 and ∞ by an infinitesimal
version of the MRMT [2]. (The vanishing is because φt fixes 0, 1,∞ for all t.) Then for all
µ̂, λ̂ ∈M(Ĉ)f and c ∈ C we have cµ̂+ λ̂ = c∂̄vµ̂ + ∂̄vλ̂ = ∂̄(cvµ̂ + vλ̂), hence vcµ̂+λ̂ = cvµ̂ + vλ̂
by uniqueness of the solution. This proves linearity of vµ̂ with respect to µ̂ ∈M(C)f .

We now have linear maps as in (6), so the final step is to exhibit an infinite-dimensional subspace
V of M(U) on which (6) is injective, thereby forcing a contradiction. Take V as follows.
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Lemma 4.2. There is an infinite-dimensional subspace V of M(U) consisting of compactly sup-
ported Beltrami forms µ such that if ∂̄v = µ for some continuous vector field with v|∂U = 0, then
µ = 0.

Before proving this, let us accept its truthhood and finish proving Theorem 1.1. Consider the
composition

V ↪→M(U)→M(Ĉ)f → TfRatd, (11)

which is the inclusion V ↪→ M(U) composed with (6). Since (6) is linear, so is (11). We show it
is also injective. Suppose µ ∈ V ⊆ M(U) maps to zero under this composition. That is, wµ̂ = 0

where µ̂ is the extension of µ provided by the map M(U) → M(Ĉ)f , and wµ̂ is defined in (7). By
(9), we have

vµ̂(f(z)) = f ′(z)vµ̂(z). (12)

Let z be a point in the Julia set J(f), with period n and multiplier λ where |λ| > 1; see Definition
2.2 and Lemma 2.4. We get n equations generated by (12):

vµ̂((f◦(j+1)(z)) = f ′(f◦j(z))vµ̂(f◦j(z)), j = 0, . . . , n− 1.

Multiplying these (treating vµ̂ as a complex-valued function) and using vµ̂(f◦n(z)) = vµ̂(z),

n∏
j=1

vµ̂(f◦j(z)) = f ′(f◦(n−1)(z)) · · · f ′(f(z))f ′(z)︸ ︷︷ ︸
=(f◦n)′(z)=λ

n−1∏
j=0

vµ̂(f◦j(z))

⇒ (λ− 1)

n−1∏
j=0

vµ̂(f◦j(z)) = 0.

As |λ| > 1, at least one of the vµ̂(f◦j(z)) is zero. Using this fact, iterating (12) and applying the
periodicity vµ̂(f◦n(z)) = vµ̂(z), we see that vµ̂(z) = 0. By the arbitrariness of z ∈ J(f), it follows
that vµ̂ = 0 on J(f). In particular, vµ̂|∂U = 0 since ∂U ∩ F (f) = ∅ =⇒ ∂U ⊆ J(f), recalling
that F (f) is open. But also ∂̄vµ̂ = µ̂ by (10), and Lemma 4.2 now tells us that µ̂ = 0. Obviously
µ = 0 follows, as µ = µ̂|U . Hence (11) is injective, yielding the desired contradiction since V is
infinite-dimensional while TfRatd is finite-dimensional.

Theorem 1.1 is thus proved. It remains to prove Lemma 4.2.

Proof of Lemma 4.2. Note that U is not conformal to Ĉ nor C, otherwise U is Ĉ (respectively
Ĉ \ {1 point}) and it follows that U cannot be wandering. We assumed U is simply connected, so
by the (usual) Riemann mapping theorem, a conformal isomorphism ψ : U → D exists and induces
a vector space isomorphism M(U) ∼= M(D). Hence to prove the lemma it suffices to prove the
analogous statement in D, as everything can then be pulled back along ψ to arrive at the result for
U (see [2] for the exact details on that part).

We proceed by explicit constructing V ⊆ M(D). For k ∈ Z≥0, define compactly supported
measurable Beltrami forms µk ∈M(D) by

µk(z) =

{
z̄kdz̄ ⊗ ∂

∂z if |z| ≤ 1/2

0 if |z| > 1/2.

8



Clearly the µk are C-linearly independent, hence span an infinite dimensional subspace V of M(D).
The equation ∂̄vk = µk is satisfied for continuous vector fields vk on D defined by

vk(z) =

{
1

k+1 z̄
k+1 ∂

∂z if |z| ≤ 1/2
1

k+1(4z)−(k+1) ∂
∂z if |z| > 1/2.

(13)

In fact, these are unique solutions up to addition of holomorphic functions. Now let µ =
∑∞

k=0 λkµk ∈
V for some λk ∈ C, and suppose ∂̄v = µ has a solution with v continuous and v|∂D = 0. To complete
the proof we need to show that µ = 0. Note that v is a C-linear combination of the vk’s plus a
holomorphic function, so v is holomorphic on |z| > 1/2 by (13). Because v = 0 on |z| = 1, we then
have v = 0 on 1/2 ≤ |z| ≤ 1 by the maximum modulus principle and the continuity of v.

For a contradiction, suppose µ 6= 0. Then the λk’s are not all zero. Let w =
∑∞

k=0 λkvk be
another vector field; we have ∂̄w =

∑∞
k=0 λkµk = µ. Then ∂̄(w − v) = 0, so w − v is holomorphic

throughout D. Since v = 0 on 1/2 ≤ |z| ≤ 1, it follows that w − v coincides with w there. Because
w is a polynomial in z−1 there (as the λk’s are not all zero), w − v must be that same polynomial
throughout D. But this polynomial has no constant term (by the definition (13) and the fact that
k ≥ 0 in the definition of w), so w− v has a singularity at zero. This contradicts the fact that w− v
is holomorphic in D. Hence µ = 0, and so V satisfies the conditions of the lemma in the unit disc
case.
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