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Abstract

Class-conditional generative models are fragile when facing noisily-labelled training data, and
existing approaches combat this by assuming prior knowledge of the noise model or estimating the
noise transition matrix. However, an accurate noise model is often difficult to obtain, and matrix
estimation methods can become unreliable if the number of classes grows large. In this paper, we
study the performance of Twin Auxiliary Classifier GAN (TAC-GAN) when confronted with label
noise and class support overlaps in training data, providing theoretical insight to its deterioration
in performance seen in empirical studies. We then propose two developments to TAC-GAN which
integrate Co-Teaching and MentorNet, originally presented as methods for classification with noisy
labels. Our integrated methods, named CO-TAC and TAC-MENTOR, assume no prior information on
the label-noise model, and are transition matrix-free. Based on our empirical experiments, these
methods perform at least as well as the baseline transition matrix-based methods across a range of
configurations, with substantial outperformance in some cases.

1 Introduction

Since their invention, generative adversarial networks (GANs) [1] have been the centre of attention
among generative models. The innovative approach of pitching networks against each other in
an unsupervised competitive setting has proved effective in areas not limited to image generation,
image-to-image translation [2–5], text generation [6,7] and data augmentation [8]. Given that visual
perception largely revolves around identifying and classifying entities, it is natural that conditional
GANs (cGAN) [9] and its derivatives have formed one of the most active branches of GAN research.
Amid the success of cGAN in generating convincing images from given class labels, a newer question
has emerged: how a cGAN can be correctly and reliably trained in the presence of corrupt training
labels?

Learning to classify data in the presence of label noise is a well-explored problem with long
history [10]. Existing methods to mitigate label noise encompass surrogate losses, loss corrections
and noise transition matrix estimation [11–14]. On the other hand, learning to subsequently generate
data of correct classes is much more challenging, particularly high-dimensional data like images.
Recent approaches have focused on assuming knowledge of, or explicitly estimating, the transition
matrix of label corruption probabilities to improve the class accuracy of images generated by a
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cGAN [15,16]. However, having prior knowledge of the label-noise structure can be rather contrived,
and matrix estimation methods may deteriorate as the number of classes increases.

Motivated by this discussion, we aim to explore new variants of cGANs that are robust to label noise
yet do not make heavy assumptions on the learner’s prior knowledge. In particular, the employment
of auxiliary classifiers in recent cGAN iterations [17,18] provides an opportunity to apply label-noise
mitigation techniques from classification problems, in turn improving image generation outcomes.
This work proposes two methods achieving this objective. Along the way, we elucidate some
theoretical aspects of TAC-GAN [18] in the context of label-noise robustness (or lack thereof).

2 Related Work

2.1 GAN and cGAN

A GAN [1] consists of two networks: a generator G mapping random noise z ∼ N(0, I) to synthetic
images (represented by a matrix of pixel values), and a discriminator D estimating the probability
that a given image is real, i.e. not generated by G. cGAN [9] is a basic extension of GAN to
allow class-conditional image generation. cGAN takes G and D to be a conditional generator and
conditional discriminator respectively; they are supplied with an additional class label y. G and D
(parametrised by ΘG and ΘD respectively) train with a minimax objective

min
ΘG

max
ΘD

Lcgan(D,G) = E(x,y)∼pXY
[lnD(x, y)] + Ez∼N(0,I),y∼qY [ln(1−D(G(z, y), y))].

where pXY is the density over (real image, ground-truth label) pairs, and qY is a prespecified
distribution of generated labels. This forces G and D to compete: D learns to distinguish real
images from those generated by G, while G learns to ‘fool’ D by mimicking the distribution of real
images. Both networks improve through competition; in particular, G induces a conditional density
qX|Y of images given labels, approximating the true conditional density pX|Y .

2.2 AC-GAN and TAC-GAN

Auxiliary Classifier GAN (AC-GAN) [17] introduces a classifier C into the GAN ecosystem, trained
from scratch alongside D and G. The loss function additionally penalises G for generating images
of incorrect classes as perceived by C; that is, if C(G(z, y)) predicts a small probability for class y,
then the loss for G is large.

While AC-GAN demonstrably improves G’s class accuracy in many GAN contexts, it suffers an image
diversity issue which Twin AC-GAN (TAC-GAN) [18] addresses with minimal overhead. TAC-GAN

introduces a twin auxiliary classifier Cmi which competes with G; G attempts to ‘fool’ Cmi into
predicting incorrect classes, and it does so by learning to generate images of greater diversity. That
said, G still adheres to the correct image classes to avoid high classification loss with respect to C,
which we shall call the primary auxiliary classifier.
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The objective functions for AC-GAN and TAC-GAN respectively are

min
ΘG,ΘC

max
ΘD

Lac(D,G,C) = Lcgan(D,G)− λCE(x,y)∼pXY
[lnC(x, y)]

min
ΘG,ΘC

max
ΘD,ΘCmi

Ltac(D,G,C,Cmi) = Lac(D,G,C) + λCEz∼N(0,I),y∼qY [lnCmi(G(z, y), y)].

2.3 Deep learning with noisy labels

Correcting noisy labels is an expensive task, so numerous methods to make classifiers robust to
label noise have been proposed. One common approach is to model the noise transition matrix and
appropriately modify the loss function [11, 12]. On the contrary, many recent works in this area
have adopted a matrix-free approach. [19] posited that label corruption probabilities depend on the
features of individual samples themselves, and proposed a framework making no assumptions on
the noise distribution. [14] concurrently trains a complementary classifier to filter out corrupted
samples. Co-Teaching [20] simultaneously trains two classifiers which teach each other based on
their strengths and weaknesses in classification. In each mini-batch, each classifier identifies the
samples which they have achieved small losses on, and instructs the other classifier to learn only
from these samples. [21] and [22] build their approaches on having a small subset of training data
with ground-truth labels known, which is feasible assumption to make in practice.

2.4 Label-noise robust cGANs

Generating data of correct classes is a more intricate (and newer) problem than learning to classify
correctly in the presence of label noise. Robust Conditional GAN (RCGAN) [16] uses a known or
estimated noise transition matrix to corrupt the labels of generated images, and employs an objective
to force the generator into produce images of correct ground-truth labels. In a similar flavour,
label-noise robust AC-GAN (rAC-GAN) [15] corrupts the auxiliary classifier’s outputs according to
the transition matrix, and uses a loss which makes the classifier gravitate towards predicting clean
labels. However, one seldom knows the transition matrix in practical applications, and accurately
estimating this matrix can be difficult in the presence of many image classes with few images per
class. As such, [23] proposes a matrix-free method via weakly-supervised learning on complementary
labels. There is still much room for exploration of label-noise robust cGANs where networks make
no noise structure assumptions.

3 Theoretical Discussion

TAC-GAN is able to achieve both class accuracy and image diversity when trained on clean labels.
In this section, we state theoretical results demonstrating that class accuracy is not upheld in
the presence of label noise, thus justifying the need for architectural improvements to TAC-GAN to
increase label-noise robustness, rather than mere hyperparameter tuning.

We must first define what it means for a conditional generator to perform well. Since a conditional
GAN aims to learn a conditional density qX|Y ‘close’ to the true conditional density pX|Y of
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images given labels, one may define an optimal conditional generator G to be one which induces
qX|Y = pX|Y . We suggest that this is an overly restrictive definition, because a good generator need
not satisfy qX|Y (x, y) = pX|Y (x, y) for all image-label pairs (x, y). For example, why should we
require qX|Y (cat image|dog label) ≈ pX|Y (cat image|dog label), if G is not supposed to produce cat
images from dog labels in the first place? It suffices to restrict our attention to image-label pairs
where the ground-truth label is consistent with the image, hence the following definition.

Definition 1. We say that a conditional generator G is optimal with respect to a true underlying
conditional density pX|Y if G induces a conditional density qX|Y such that, for all labels k and
images x,

pY |X(k | x) = max
j
pY |X(j | x)⇒ qX|Y (x | k) = pX|Y (x | k).

The equality on the left means we only care about having qX|Y = pX|Y for image-label pairs where
the label is the likeliest for the image, according to ground truth. Thus we have ignored the
behaviour of qX|Y on inconsistent image-label pairs.

We assume that pY |X(· | x), given some image x, is not necessarily degenerate on some class k. This
reflects the notion that an image does not always belong deterministically to a single class, because
the sets of real images Sy belonging to different classes (‘class supports’) can overlap. Hence, when
we refer to a ‘ground-truth label distribution’, we are referring to the vector of ground-truth class
probabilities associated with an image. In general, the more ambiguous an image x is, the closer
the probabilities pY |X(k | x) are to each other. The greater the overlap between class supports, the
greater the likelihood of sampling such an ‘ambiguous’ image. On the other hand, we only provide
one-hot vectors as class labels while training.

Now we formulate the label-noise setting. Let Y ∼ Unif({1, . . . , n}) be the random variable of
ground-truth labels, with mass function pY . Let the corruption probability from class i to class j
be the entry Γij of an n × n transition matrix Γ. Then the random variable of corrupt labels is
Ỹ ∈ {1, . . . , n}, and

P
(
Ỹ = j | Y = i

)
= ΓijP (Y = i) = Γij/n.

The following propositions demonstrate the theoretical performance of TAC-GAN under uniform label
noise, i.e. where Γij is constant for all i 6= j.

Proposition 1. Suppose the label-noise matrix Γ represents uniform corruption with probability c,
i.e. Γii = 1− c and Γij = c

n−1 for i 6= j. Then the conditional generator G in TAC-GAN induces the
conditional density

qX|Y (x | k) ≈ (1− c)pX|Y (x | k) +
c

n− 1
· pX(x)

pY (k)

n∑
j=1,j 6=k

pY |X(j | x).

Proposition 2. In the uniform label-noise setting with n classes and a positive probability of label
corruption, the TAC-GAN generator is not optimal (in the sense of Definition 1). Moreover, this
is caused by the primary auxiliary classifier learning a biased distribution for labels given images,
qY |X 6= pY |X .

Proposition 3. The greater the overlap between class supports Sy, the lower the ground-truth class
accuracy of generated images from the TAC-GAN generator at a given noise rate c ∈ [0, 1].
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Proofs are given in Appendix A. Proposition 1 gives the theoretical conditional density learned by
G, and Proposition 2 demonstrates that TAC-GAN fails to be robust to label noise. The statement
of Proposition 3 is intuitive, but it deserves mention since its proof follows naturally from our
mathematical setup.

4 Proposed Methods

Proposition 2 suggests that all one needs to do is correct the TAC-GAN primary auxiliary classifier
C so that it learns an unbiased distribution, qY |X = pY |X . To do this in the presence of noisy
labels, we extend TAC-GAN by incorporating recent approaches for classification with noisy labels into
C’s training algorithm. We also aim to do so without giving the networks prior knowledge about
the label noise structure. This leads to our proposals of combining TAC-GAN with the matrix-free
methods of Co-Teaching [20] and MentorNet [22].

4.1 TAC-GAN with Classifier Co-Teaching (CO-TAC)

An additional classifier C ′, trained only on real data, is added. For every mini-batch of (real images,
possibly corrupt labels), C and C ′’s training step follows the Co-Teaching algorithm. That is, C and
C ′ each calculate a vector of losses for every training image in the mini-batch. C identifies some R%
of images in the mini-batch which it has achieved smallest losses on, and C ′ only backpropagates its
losses for those images. Likewise, C ′ chooses the losses for C to backpropagate against.

In the original formulation of Co-Teaching, the proportion of images R counted in the final loss for
each batch decays linearly from 1 to k(1 − ε), where k is a constant and ε is the noise rate. For
simplicity we fix k = 1. However, we do not specify ε to the networks, as otherwise this violates the
assumption-less condition that we seek to maintain regarding the noise structure. We therefore let
R decay linearly to 0.5 for the first half training epochs, and after this, we maintain an exponential
moving average E of the proportion of generated images correctly classified by C and C ′, updated
every epoch. We interpret E as an estimate of ε, so we set R = 1− E in the latter half of training
epochs.

The full training algorithm is described in Appendix B.2.

4.2 TAC-GAN with MentorNet (TAC-MENTOR)

A multilayer perceptron M called MentorNet is added. Input to M consists of C’s loss and loss
percentile on an image in the mini-batch, as well as the training epoch percentile. It outputs a
weight between 0 and 1 based on the predicted importance of this particular image to C’s learning.
C calculates its loss based on the supplied weights for each image in the mini-batch.

To train M requires the existence of a small subset D in which the correctness of every image-label
pair is known. This emulates a real-world setting where the label-correctness of a small proportion
of samples is known, perhaps by human verification, but it is expensive to individually verify the
remaining majority of labels. Because the label-correctness of samples in D is known, their optimal
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weights are also known (1 for a correct label, 0 for an incorrect label). M can therefore be trained
on images in D using a cross-entropy loss whenever they are sampled. We employ the SPADE
algorithm (proposed alongside MentorNet) to concurrently train M alongside C.

In our experiments, we take D to be a random 5% of the whole training set. The full algorithm is
described in Appendix B.3.

5 Experiments

5.1 Experimental Setups

We compare the performance of our proposed methods to baseline methods (RCGAN [16] and
rAC-GAN [15]) over different datasets and label-noise settings. Since both of our proposed methods
are built on TAC-GAN, we adapt the baseline methods to the TAC-GAN framework for fair comparison.
We also take this opportunity to give the baseline methods new aliases to avoid confusion. Since
RCGAN modifies Generated labels using an estimated transition matrix immediately after being
supplied to the generator, we use RC-TAC-G to denote the combination of RCGAN with TAC-GAN.
On the other hand, rAC-GAN corrupts the outputs of the auxiliary Classifier. We use RC-TAC-C

to denote the combination of rAC-GAN with TAC-GAN. Hence we have four TAC-GAN frameworks to
compare: CO-TAC, TAC-MENTOR, RC-TAC-G and RC-TAC-C.

Dataset No. classes Images per class Size Label noise types

MNIST 10 6000 28px Uniform, Flip

CIFAR10 10 6000 32px Uniform, Flip

CIFAR100 100 600 32px Uniform, Cycle

Table 1: Datasets and experimental setups.

Table 1 outlines the datasets and tests to be performed. The datasets used are the MNIST
dataset [24] and the CIFAR10/100 datasets [25]. Since clean labels are available by default, this
allows us to experiment with different types and levels of label corruption. Table 2 gives brief
descriptions of these.

Noise
type

Description Values of c to test

Uniform Labels y corrupt to other labels ỹ with probability c
n−1

for each ỹ 6= y.
0.20, 0.35, 0.50, 0.65,
0.80

Flip Labels are split into pairs (yi, yj). Ground-truth labels
yi are flipped to yj with probability c, and vice versa.
This applies to all label pairs.

0.15, 0.25, 0.35, 0.45

Cycle Only applicable to CIFAR100. Within each of the 10
superclasses, the 5 subclasses are placed randomly into
a cycle, and labels of each subclass transition with
probability c to the next label in the cycle.

0.15, 0.25, 0.35, 0.45
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Table 2: Specifications of label noise settings.

For flipping noise in the MNIST dataset, the pairs established are (1, 7), (2, 5), (3, 8), (4, 5), (6, 0).
For CIFAR10, they are (airplane, bird), (automobile, truck), (cat, dog), (deer, horse), (frog, ship).
These pairings are chosen to put together visually similar classes, making the task more challenging.

For performance evaluation, we will use a combination of qualitative appraisal and quantitative
metrics. This approach is widely used in current GAN research since it remains open as to what
makes a reliable, measurable quantity for GAN performance. For quantitative evaluation on MNIST,
we use the GAN-train and GAN-test metrics [26]. GAN-train is the class accuracy of a pre-trained
classifier for real data on the generated images, and GAN-test is the accuracy of the twin auxiliary
classifier Cmi (which is trained only on generated images) on real images. For tests on CIFAR10
and CIFAR100, we additionally use Intra-FID [27] to measure intra-class image quality.

5.2 Results and Image Previews1

5.2.1 MNIST

MNIST Uniform

Corruption prob c 0.20 0.35 0.50 0.65 0.80

GAN-test or -train (%) test train test train test train test train test train

RC-TAC-G 82.9 98.9 78.7 98.8 63.8 98.8 51.0 98.2 36.4 96.5

RC-TAC-C 89.9 97.6 81.1 98.8 73.2 97.4 89.3 97.8 68.5 95.9

CO-TAC 97.5 97.2 96.0 97.9 94.4 98.2 98.1 92.8 72.2 78.9

TAC-MENTOR 97.4 99.1 93.8 97.9 96.4 98.6 94.7 97.9 93.5 95.2

Table 3: MNIST uniform corruption GAN-test and GAN-train results. Higher score is better.

MNIST Flip

Corruption prob c 0.15 0.25 0.35 0.45

GAN-test or -train (%) test train test train test train test train

RC-TAC-G 82.2 96.1 78.4 98.1 63.2 97.1 54.2 72.0

RC-TAC-C 89.3 98.3 73.5 70.1 79.1 78.9 47.5 52.5

CO-TAC 98.1 98.2 95.0 96.8 94.1 95.2 93.6 97.2

TAC-MENTOR 95.9 98.9 93.4 98.4 81.2 97.9 61.4 84.9

Table 4: MNIST label-flip corruption GAN-test and GAN-train results. Higher score is better.

1A shortage of time and computational resources did not allow enough CIFAR100 experiments to be run to
completion before the deadline to permit substantial discussion. Deep Apologies.
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Figure 1: Generated image previews for MNIST with uniform corruption, where label corruption
probability of training data = 0.8. Clockwise from top left: RC-TAC-G, RC-TAC-C, CO-TAC,

TAC-MENTOR.

5.2.2 CIFAR102

CIFAR10 Uniform

Corruption prob c 0.20 0.35 0.50 0.65 0.80

Intra-FID or GAN-train I-FID train I-FID train I-FID train I-FID train I-FID train

RC-TAC-G 19.8 82.5 36.3 80.1 73.0 69.7 71.7 58.2 93.7 64.3

RC-TAC-C 27.7 80.5 28.4 81.3 55.5 69.0 86.3 60.4 99.9 61.1

CO-TAC 24.4 81.9 29.4 82.2 39.1 80.6 59.3 79.0 66.8 73.1

TAC-MENTOR 20.6 81.3 30.1 78.5 54.5 75.6 97.9 71.6 96.2 65.3

Table 5: CIFAR10 uniform corruption Intra-FID and GAN-train results. Intra-FID: lower is better.
GAN-train: measured in %, higher is better.

2GAN-test was not measured for CIFAR data due to an unfortunate last-minute technical bug.
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CIFAR10 Flip

Corruption prob c 0.15 0.25 0.35 0.45

Intra-FID or GAN-train I-FID train I-FID train I-FID train I-FID train

RC-TAC-G 26.2 79.9 49.8 77.7 68.0 73.2 76.7 65.7

RC-TAC-C 23.1 81.2 41.6 66.1 87.2 48.4 108.2 40.9

CO-TAC 24.2 83.6 31.6 79.7 64.5 80.0 87.0 74.8

TAC-MENTOR 21.0 78.1 32.0 70.9 57.9 67.8 79.1 63.3

Table 6: CIFAR10 label-flip corruption Intra-FID and GAN-train results. Intra-FID: lower is better.
GAN-train: measured in %, higher is better.

Figure 2: Generated image previews for CIFAR10 with label-flipping corruption, corruption
probability 0.45. Clockwise from top left: RC-TAC-G, RC-TAC-U, CO-TAC, TAC-MENTOR.

5.3 Discussion

We will now discuss the results presented in Section 5.2.
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5.3.1 MNIST

The class accuracy of generated images, measured by GAN-test, generally deteriorates with increasing
label corruption probability as expected. However, it is more serious for the baseline models RC-TAC-G
and RC-TAC-C, whereas the proposed solutions appear to provide more insulation against label
noise, from a class accuracy perspective. On the other hand, the GAN-train statistic tends to be
less susceptible to increasing label corruption probability. This suggests that while the auxiliary
classifier is mostly successful at extracting ground-truth labels despite being trained with label
noise, the baseline methods have difficulties translating this to good generator performance. This is
contrary to the observation drawn from Proposition 2 that correcting the primary auxiliary classifier
to learn an unbiased distribution of labels naturally fixes the generator as well, and deserves further
investigation.

The proposed methods, while performing better than the baselines, seem not to give consistent
performance - refer to the abrupt deterioration in performance for CO-TAC and TAC-MENTOR in
the uniform and flipping scenarios respectively. However, when this happens, both GAN-test and
GAN-train decline, whereas the latter was (mostly) intact when the baseline methods’ performances
deteriorated. One could therefore suggest that the proposed methods provide more consistent
‘bridging’ between classifier and generator performance. If the relationship is causal, further
solutions for classification with noisy labels could be implemented in one of these frameworks to
drive up generator performance too.

A qualitative evaluation of generated images largely reflects what the quantitative results suggest:
the baselines suffer in terms of class accuracy, and image quality appears to suffer slightly in the
RC-TAC-C case as well. The proposed methods improve greatly in terms of accuracy, particularly
MentorNet. The samples shown on Figure 1 are the image previews corresponding to the rightmost
column of Table 3. Here, CO-TAC fell vulnerable to class inaccuracy and/or poor image quality for
certain classes. This reflects the issue of performance consistency raised above.

5.3.2 CIFAR10

Intra-FID, which measures intra-class image quality and diversity, deteriorates (increases) as the
corruption probability increases. This is expected since training label corruption interferes with
learning progress, ultimately leading to poorer quality generated images for a fixed number of
training epochs. In the uniform corruption experiments with high corruption probability, CO-TAC
performed much better than the other networks with respect to both metrics (intra-FID and
GAN-train). TAC-MENTOR, on the other hand, did not record a substantial improvement on the
baselines.

In the flip corruption experiments, there appears to be no clear winner; RC-TAC-G, CO-TAC and
TAC-MENTOR outperform one another with respect to different evaluation metrics over different label
corruption probabilities. RC-TAC-C was the underperformer in this series of experiments.

A qualitative analysis provides some insight beyond these seemingly inconclusive results. Over a
range of configurations for label corruption type and corruption probability (one of whose image
previews are shown in Figure 2), RC-TAC-C experiences an onset of mode collapse early enough
into training, resulting in generated images of subpar quality. In several situations, CO-TAC also
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experienced mode collapse, which can be seen in the ‘dog’ class in Figure 2. However, in classes
where mode collapse did not occur, CO-TAC produced images of good quality, diversity and realism
compared to the other models. How one can tailor CO-TAC to avoid mode collapse is therefore a
question worth considering. RC-TAC-G and TAC-MENTOR achieve good image diversity, but on closer
inspection they result in poor class accuracy. That said, TAC-MENTOR produces more well-defined
images with greater integrity than those generated by RC-TAC-G.

6 Conclusion and Future Work

In this work, we developed and tested two label-noise robust extensions to TAC-GAN in view of a
preliminary theoretical discussion. These extensions are based on relatively new approaches to
classification with noisy training labels, and make no assumptions on the label noise structure.
Based on our experiments, the new models perform at least as well as the baselines, and in some
cases there is significant outperformance.

Future work related to the ideas discussed in this work may address the following questions:

• How do auxiliary classifiers and generators interact with each other in an auxiliary classifier
GAN? This could enable us to understand which solutions for classification problems can
be ported into GANs to improve the quality of a generator. One may even explore whether
generators can be used to improve classification outcomes, since (class-conditional) generation
and classification are essentially inverse problems.

• Are there more compact ways to enhance GAN capabilities rather than introducing new networks
into the ecosystem? A basic GAN has two networks. An auxiliary classifier is used to add
class-conditional generation capabilities. A twin auxiliary classifier is used to facilitate image
diversity. In this work, we added yet another network to handle label noise. Having more
networks makes GANs more capable yet more complex and intractable; could simpler methods
suffice?

• What are the inherent properties of GANs? Deep networks are commonly referred as ‘black
boxes’, and this label is true to GANs in particular. An understanding of the theoretical
and/or mathematical properties of GANs would help to illuminate this black box, and in
doing so potentially expose a range of new methods and techniques to solve harder problems.
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Appendix A Mathematical Work

A.1 Proof of Proposition 1

[18] shows that the primary auxiliary classifier C successfully learns a conditional distribution qY |X
such that qY |X ≈ pY |X , the true conditional distribution of true labels given images. The generator
induces a conditional density qX|Y and hence qX , since qY is given (the label is manually generated
and supplied). It can be proved that the GAN minimax game leads to qX ≈ pX := the true density
over images. Assume Y ∼ DU(1, n), so pY is known. Then

qX|Y =
qY |XqX

pY

is the conditional density induced by TAC-GAN. We have that

qX|Y =
qY |XqX

pY
≈
pY |XpX

pY
=: pX|Y , (1)

thus fulfilling our goal to learn pX|Y .

Now factor in label noise. Let Ỹ the distribution over corrupt labels defined by

P
(
Ỹ = j | Y = i

)
= ΓijP (Y = i)

where Γ is the corruption matrix.

With label noise, the primary auxiliary classifier in TAC-GAN learns qỸ |X ≈ pỸ |X , but thinks it is

learning qY |X ≈ pY |X . This is because labels are now drawn from Ỹ , not Y . This ‘mistake’ causes
TAC-GAN to use the conditional density

qX|Y :=
qỸ |XqX

pY
(2)

as an estimator for pX|Y . Proposition 1 illuminates the consequences of this. We proceed with its
proof.

Proposition 1. Suppose the label-noise matrix Γn×n represents uniform corruption with probability
c, i.e. Γii = 1 − c and Γij = c

n−1 for i 6= j. Then the induced conditional density qX|Y is
approximately given by

qX|Y (x | k) ≈ (1− c)pX|Y (x | k) +
c

n− 1
· pX(x)

pY (k)

n∑
j=1,j 6=k

pY |X(j | x).
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Proof. For any class label k,

qX|Y (x | k) =
qỸ |X(k | x)qX(x)

pY (k)
using (2)

≈
pỸ |X(k | x)pX(x)

pY (k)
as qỸ |X ≈ pỸ |X , qX ≈ pX

=
pX(x)

pY (k)
·
n∑
j=1

pỸ |(X,Y )(k | (x, j))︸ ︷︷ ︸
=pỸ |Y (k|j)=Γjk

pY |X(j | x)


=
pX(x)

pY (k)
·
n∑
j=1

(
ΓjkpY |X(j | x)

)
= (1− c)pX(x)

pY (k)
· pY |X(k | x) +

c

n− 1
· pX(x)

pY (k)
·

n∑
j=1,j 6=k

pY |X(j | x)

= (1− c)pX|Y (x | k) +
c

n− 1
· pX(x)

pY (k)

n∑
j=1,j 6=k

pY |X(j | x).

A.2 Proof of Proposition 2

Proposition 2. In the uniform label-noise setting with n classes and a positive probability of label
corruption, the TAC-GAN generator is not optimal (in the sense of Definition 1). Moreover, this
is caused by the primary auxiliary classifier learning a biased distribution for labels given images,
qY |X 6= pY |X .

Proof. Suppose for a contradiction that the generator is optimal. Then for an image x and
label k such that pY |X(k | x) = maxj pY |X(j | x), the induced conditional density qX|Y satisfies
qX|Y (x | k) = pX|Y (x | k). By Proposition 1 this holds iff

c

n− 1
· pX(x)

pY (k)

n∑
j=1,j 6=k

pY |X(j | x) = cpX|Y (x | k)

pX(x)

n∑
j=1,j 6=k

pY |X(j | x) = (n− 1)pX|Y (x | k)pY (k)

= (n− 1)pY |X(k | x)pX(x)
n∑

j=1,j 6=k
pY |X(j | x) = (n− 1)pY |X(k | x)

1− pY |X(k | x) = (n− 1)pY |X(k | x)

pY |X(k | x) = 1/n.
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But this implies that

n∑
j=1,j 6=k

pY |X(j | x) =
n− 1

n

⇒ ∃j′ 6= k, pY |X(j′ | x) ≥ 1/n = pY |X(k | x), n− 1 terms in sum, pigeonhole principle

contradicting the initial condition that pY |X(k | x) = maxj pY |X(j | x).

If the TAC-GAN primary auxiliary classifier had instead learned an unbiased conditional distribution
qY |X = pY |X , then (1) holds and gives qX|Y = pX|Y . This concludes the proof.

A.3 Proof of Proposition 3

Proposition 3. The greater the overlap between class supports Sy, the lower the ground-truth class
accuracy of generated images from the TAC-GAN generator at a given noise rate c ∈ [0, 1].

Proof. We prove the result for uniform noise among n classes with corruption probability c. Let S
be the union of all class supports. If the generator is supplied with class label k, we measure the
probability of generating an image of the correct ground-truth class by the quantity

∫
S pY |X(k |

x)qX|Y (x | k)dx. By Proposition 1,∫
S
pY |X(k | x)qX|Y (x | k)dx ≈ (1− c)

∫
S
pY |X(k | x)pX|Y (x | k)dx︸ ︷︷ ︸

=:αk

+
c

n− 1
·
pX(x)pY |X(k | x)

pY (k)

∫
S

n∑
j=1,j 6=k

pY |X(j | x)dx

= (1− c)αk +
c

n− 1
· pX|Y (x | k)

∫
S

1− pY |X(k | x)dx

= (1− c)αk +
c

n− 1

[∫
S
pX|Y (x | k)dx− αk

]
= (1− c)αk +

(1− αk)c
n− 1

.

This is decreasing in αk :=
∫
S pY |X(k | x)pX|Y (x | k)dx, which is a measure for the degree of overlap

between the class support Sk and the other class supports.

To make the meaning of αk clear, suppose that there is no overlap, so Sk is disjoint from all other
class supports. If pX|Y (x | k) > 0 for some x ∈ S, it must hold with probability one that x ∈ Sk, so
pY |X(k | x) = 1. Thus αk =

∫
S pX|Y (x | k)dx = 1. On the other hand, suppose that all class labels

in the training set were random and so the Sj ’s and all class-specific distributions are identical.
Then pY |X(k | x) = 1/n, and αk = 1/n.

αk is a rather crude measure of class support overlaps, because it does not contain information about
how the class supports overlap, and its value is almost always unknown. Nevertheless, Proposition 3
theoretically backs the observation that class support overlaps adversely affect the class accuracy of
conditional GANs.
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Appendix B Algorithms

B.1 Common elements

The following are common to all configurations:

Symbol Description

G, ΘG Conditional generator with parameters

D Discriminator

C Primary auxiliary classifier

ΘDC Parameters of joint network consisting of D, C and Cmi (as per original TAC-GAN)

S Training dataset {(imagei, labeli)}
n Number of classes

Γ n × n transition matrix, Γij = prob. of corrupting image with label i to label j.
Γi· = ith row of Γ

Ttrain Number of training epochs

m Mini-batch size

d Noise dimension

η Learning rate

`(·, ·) Cross-entropy loss

Table B1: Common elements of all configurations.

Algorithm for training G

The training procedure for G does not change across the configurations, so we state it here first.

Algorithm 1 TAC-GAN: G training step

Input noise z ∈ Rm×d, labels y ∈ {1, . . . , n}m

1: Lgan ← `(D(G(z,w)),1) . D estimates prob. of image being real
2: Lc ← `(C(G(z,w)),w)
3: Lcmi ← `(Cmi(G(z,w)),w)
4: LG ← Lgan + Lc − Lcmi . −Lcmi because G is competing with Cmi
5: update ΘG = ΘG − η∇LG
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B.2 TAC-GAN with Classifier Co-Teaching (CO-TAC)

Here we add another auxiliary classifier C ′, trained on real data. Its parameters ΘC′ are not shared
with ΘDC .

Algorithm 2 CO-TAC

1: for T = 1, . . . , Ttrain do
2: if T < Ttrain/2 then
3: R(T )← 1− T/Ttrain
4: else
5: R(T )← 1− E
6: end if
7: r ← bmR(T )c . no. small losses to choose per mini-batch
8:

9: for mini-batch (x,y) := {(xi, yi)}i≤m in S do
10: sample corrupted labels ỹ ∈ {1, . . . , n}m by ỹi ∼ Γyi·

11: sample noise z ∈ Rm×d by zi· ∼ N(0, Id)

12: sample generated labels w ∈ {1, . . . , n}m by wi ∼ Unif({1, . . . , n})
13:

14: train D,C,C ′, Cmi:
15: LDgan ← `(D(x),1) + `(D(G(z,w)),0)
16: LCr ← `(C(x), ỹ), no reduction
17: LC′r ← `(C ′(x), ỹ), no reduction
18: J ← arg min{H⊆[m]:|H|=r}

∑
h∈H LCr[h] . select r smallest losses

19: K ← arg min{H⊆[m]:|H|=r}
∑

h∈H LC′r[h]

20: LCr ← 1
r

∑
k∈K LCr[k] . backprop losses chosen by other classifier

21: LC′r ← 1
r

∑
j∈J LC′r[j]

22: Lmi ← `(Cmi(G(z,w)),w)
23: LDC ← LDgan + LCr + Lmi . as per TAC-GAN classifier/discriminator loss
24: update ΘDC = ΘDC − η∇LDC
25: update ΘC′ = ΘC′ − η∇LC′r

26: end train D,C,C ′, Cmi
27:

28: train G: input z,w (see Algorithm 1)
29: end train G
30: end for
31: E ← update exp. moving average with prop. of generated images classified correctly by C

this epoch
32: end for

Output ΘG
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B.3 TAC-GAN with MentorNet (TAC-MENTOR)

Table B2 summarises the additional elements of TAC-MENTOR.

Symbol Description

M MentorNet (multilayer perceptron)

Tburn Number of burn-in epochs for MentorNet, during which weights are sampled from
Bernoulli(p)

S∗ Small subset of S; images whose true labels are known to MentorNet. We take
|S∗| = 0.05|S|

Table B2: Additional elements for TAC-MENTOR.
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Algorithm 3 TAC-MENTOR

1: for T = 1, . . . , Ttrain do
2: for mini-batch (x,y) := {(xi, yi)}i≤m in S do
3: sample corrupted labels ỹ ∈ {1, . . . , n}m by ỹi ∼ Γyi·

4: sample noise z ∈ Rm×d by zi· ∼ N(0, Id)

5: sample generated labels w ∈ {1, . . . , n}m by wi ∼ Unif({1, . . . , n})
6:

7: train D,C,Cmi, possibly M :
8: LDgan ← `(D(x),1) + `(D(G(z,w)),0)
9: LCr ← `(C(x), ỹ), no reduction

10: `EMA ← update exp. moving average with 75-pctile loss in LCr
11: if T ≤ Tburn then
12: sample backprop weights λλλ ∈ {0, 1}m by λi ∼ Bernoulli(p)

13: else
14: λλλ←M(φ(LCr, `EMA)) := [M(φ([LCr]i, `EMA))]i≤m . M decides weights using

loss, loss EMA
15:

16: train M :
17: for all i such that (xi, yi) ∈ (x,y) ∩ S∗ do
18: LM ← `(λi,1(ỹi = yi)) . optimal weight 1 if label is correct, 0 else
19: update ΘM = ΘM − η∇LM
20: end for
21: end train M
22:

23: end if
24: LCr ← 1

mλλλ
TLCr

25: Lmi ← `(Cmi(G(z,w)),w)
26: LDC ← LDgan + LCr + Lmi
27: update ΘDC = ΘDC − η∇LDC
28: end train D,C,Cmi, possibly M
29:

30: train G: input z,w (see Algorithm 1)
31: end train G
32: end for
33:

34: end for

Output ΘG
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