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Abstract

Tangent flows are limits obtained by rescaling solutions of mean curvature flow as they approach
singularities. They are concrete geometric models of singularities, and are key to understanding
the kinds of singularities that can occur. However, tangent flows are inherently defined as limits in
a subconvergent sense, and this leaves open the possibility that two tangent flows associated to a
given singularity look wildly different. The question of whether tangent flows are unique remains
a major open problem, and an affirmative answer has striking implications for the singular set.

Uniqueness of tangent flows has long been known to hold for convex mean curvature flows in all
dimensions and for all mean curvature flows in the plane (i.e. for the curve shortening flow). On
the other hand, uniqueness under weaker assumptions has only recently shown promising signs
of progress. This thesis details some of this recent work. The central result we present is that
uniqueness of tangent flows holds too for mean convex mean curvature flows in all dimensions.
To prove this, we will explain the work of Schulze and Colding–Minicozzi on the uniqueness
of compact and cylindrical tangent flows respectively. We assume no prior familiarity with the
mean curvature flow, so this thesis doubly functions as an entry point to this fascinating area of
mathematics.
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Notation and Symbols

Unless otherwise specified, all manifolds are smooth and orientable without boundary, and all
sections of vector bundles are smooth. We also adopt Einstein summation convention in which
repeated indices are implicitly summed over. Expressions of the form C = C(α, β, . . .) mean that
C is a constant depending on α, β, etc. This constant can change from line to line but retains the
most recently stated dependencies.

≡ is identically equal to

⊗ tensor product

∇ covariant derivative or gradient operator

∇ Euclidean covariant derivative or gradient operator

∇i, ∇i covariant derivatives in the i-th coordinate direction with respect to a chart
(resp. canonical coordinates in Euclidean space)

∇k, ∇k k-th iterated covariant derivatives

∆ Laplacian

[f ] weighted integrals over a hypersurface Σ, i.e.
∫

Σ fe
− |x|

2

4 (used in §4)

|T | norm of the tensor T on a hypersurface

‖v‖V norm of v in a normed vector space V

∗ tensor contraction, possibly involving the metric

x restriction of measure

〈·, ·〉 Riemannian metric or inner product

(?R,r,`,n) special quantity defined by (6.50) (used in §6)

A second fundamental form

a.e. almost everywhere

BR, BR(x0) Euclidean ball of radius R centred at the origin (resp. centred at x0)

C(α, β, . . .) a constant depending on α, β, . . .

Ck(E), Ck,α(E) Ck sections, Ck,α Hölder sections of E

Ck set of all rotations of Sk√
2k
× Rn−k about the origin in Rn+1 (used in §6)

d de Rham differential or Fréchet derivative

div divergence

F(Σ), FΣ(u) F -functional on a hypersurface Σ, or on the normal graph of u above Σ

v



vi

φ −H + 〈x,n〉
2 (used in §6)

ϕ, ϕ̃ MCF (resp. RMCF) as a one-parameter family of immersions

ϕt, ϕ̃s timeslices of ϕ, ϕ̃

g Riemannian metric

Γ(E), Γc(E) smooth sections (resp. compactly supported smooth sections) of E

Γkij Christoffel symbols

H mean curvature

Hn n-dimensional Hausdorff measure

hij components of the second fundamental form

L typically the linearisations ofM,MΣ etc. at 0

Lp(E) Lp sections of E (Gaussian-weighted in §4 and §6)

L2(µ), L2(ν) describes an L2 structure with inner product defined by paired integration
against the measure µ (resp. ν)

L Ornstein-Uhlenbeck operator

M typically a smooth, orientable n-dimensional manifold without boundary

MCF mean curvature flow

M,MΣ, etc. Euler-Lagrange functional of F , FΣ, possibly Gaussian-weighted

µ Riemannian measure

NM normal bundle of M

N, N0 natural numbers excluding (resp. including) zero

n outward-pointing unit normal

ν Gaussian measure on a hypersurface

O big O notation for asymptotic behaviour

RMCF rescaled mean curvature flow

R(ΣT ) entropy scale of the RMCF Σs at time s = T (used in §6)

rε,`,K(Σ) cylindrical scale of the hypersurface Σ (used in §6)

Snr , Sn n-sphere of radius r (resp. radius 1) centred at the origin in Rn+1

Σs RMCF as a family of compact, embedded hypersurfaces (used in §5 and §6)

TM , T ∗M tangent (resp. cotangent) bundle of M

τ A
H (used in §6)

W k,p(E) W k,p Sobolev sections of E

wΓ distance to the axis of the cylinder Γ (used in §6)
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Chapter 1

Introduction

Under mean curvature flow, a smooth surface moves to decrease its area as rapidly as possible.
This mechanism was first studied by material scientists almost a century ago to model grain
growth in metal annealing [Sut28, vN52, Mul56], and has since found applications in image
processing and cellular automata, among other things. Mathematical interest in MCF was invig-
orated in the late 1970s and 1980s, starting with Brakke’s comprehensive monograph [Bra78]
in the measure-theoretic setting, followed by seminal works of Huisken and others on classical
solutions (e.g. [Hui84,Hui90,EH91]).

At its core, mean curvature flow is a nonlinear partial differential equation governing the motion
of a hypersurface. Nonlinearity gives rise to singularities: solutions of the flow cannot, in general,
exist smoothly for infinite time. Geometrically, this corresponds to the hypersurface collapsing
due to curvature blowup, but even this phenomenon can take place in various ways; see Figure
1.1. Ergo, a large part of mean curvature flow revolves around one question: what do singularities
of the flow look like?

Figure 1.1: Different singularity modes for mean curvature flow in R3. Top (adapted
from [CMP15]): a dumbbell develops a neckpinch, becoming singular at a point while
the area remains positive. Bottom: a thin torus of revolution has becomes thinner, and
the singularity locus is a circle. At the singular time, all surface area is lost.

To examine a singularity, one magnifies (or blows up) around the point where singular behaviour
occurs to get a clearer picture of what is happening. One then tries to extract a limit hypersurface
which would act as a geometric model of the singularity. Such limits are called tangent flows. By

1



2 Chapter 1. Introduction

standard results [Hui90, Whi94, Ilm95], if the blowup is done at a suitable rate, then tangent
flows always exist, and they belong to a special class of hypersurfaces called shrinkers. This is
a powerful statement – not only does it provide a robust blowup method, but it also relates the
study of singularities to the study of shrinkers. However, it has one major shortcoming: it only
guarantees the existence of tangent flows in a subconvergent sense (think Arzelà–Ascoli). This
means that multiple tangent flows could exist for a given singularity.

Suppose tangent flows were not unique, and we have multiple (possibly wildly different) tangent
flows to model the same singularity. How could we then claim to really know what the singularity
looks like? Which tangent flow models the singularity most accurately? Have we really magnified
in way that gives an informative picture of how the singularity forms? Thus, in an ideal world,
uniqueness of tangent flows is something that holds true. Whether or not this ideal is realised is
a fundamental problem with far-reaching implications.

The earliest results on uniqueness of tangent flows are due to Gage–Hamilton–Grayson [GH86,
Gra87] and Huisken [Hui84], respectively for mean curvature flow in R2 (the curve shortening
flow) and for convex mean curvature flows in Rn+1, n ≥ 2. In fact, they proved that all tangent
flows are spheres in these cases. More generally, tangent flows come in many different shapes and
forms, making uniqueness much harder to prove. In a culmination of efforts made by [Sch14]
and Colding–Minicozzi [CM15], alongside many precursors, uniqueness of tangent flows was
finally proved for mean convex mean curvature flows in all dimensions. The ultimate goal of this
thesis is to prove this result – a major accomplishment in the field.

Theorem 1.1 ([Sch14,CM15]). Every tangent flow associated to a mean curvature flow of compact,
embedded, mean convex hypersurfaces is unique.

We will state a stronger, more precise version of this in Theorem 3.31, which additionally classifies
all possible tangent flows that could arise.

In fact, the way Theorem 1.1/3.31 is proved gives an even more powerful result: all tangent
flows in ‘most’ mean curvature flows are unique. This is made precise through the notion of
generic mean curvature flow put forth by Colding and Minicozzi in [CM12]. We will not establish
this result in full, but it will be discussed briefly in the final chapter.

1.1 Outline of the thesis

This thesis is written for a reader who is familiar with the fundamentals of Riemannian geometry
and functional analysis, and has a passing acquaintance with partial differential equations. No
prior knowledge about mean curvature flow is assumed. This thesis is also intended to be useful
to specialists who seek to comprehend this small corner of the literature.

In §2, we lay out the necessary geometry and analysis background for later chapters. This also
serves as an opportunity to declare our notation and conventions.

In §3, we introduce the mean curvature flow of Euclidean hypersurfaces and formalise the blowup
procedure outlined above. We make the connection between tangent flows and shrinkers, and
motivate the study of uniqueness of tangent flows.
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In §4, we begin our quest to prove Theorem 1.1/3.31. After introducing some relevant machinery,
we prove the classification result of [CM12]: the only embedded, mean convex shrinkers with
polynomial volume growth are spheres, cylinders and hyperplanes.

In §5, we motivate the use of Łojasiewicz inequalities to study uniqueness of tangent flows. We
then follow [Sim83a] and [Sim96] in proving the Łojasiewicz–Simon gradient inequality. Lastly,
we use this to prove the uniqueness of all compact, embedded tangent flows [Sch14].

In §6, we prove the uniqueness of cylindrical tangent flows. This result is due to Colding and
Minicozzi [CM15], but our treatment also draws from [Man14, CIM15, CM19b, Zhu20]. We
acknowledge helpful suggestions provided to us by Jonathan Zhu.

In §7, we survey the current state of knowledge regarding uniqueness of tangent flows and other
related aspects of mean curvature flow. We also outline some applications of the results presented
and identify potential avenues for further work.

There are two appendices consisting of technical computations and estimates. These are well-
known to experts, but are often employed in the literature without a reference. We included
them to hopefully make the proofs accessible to a wider audience.

The key results presented in this thesis are not original. However, the road to establishing them
is dotted with original contributions, chiefly in exposition, reorganisation of material, and added
detail to proofs. Where there are gaps and/or inconsistencies in the original sources, we do our
best to correct them. These corrections use ideas from other papers as well as ideas of our own.
As a result, some of our statements and proofs are quite different from the original ones (this
mostly occurs in §6). We will highlight these differences along the way.



Chapter 2

Preliminaries

Unless otherwise specified, all manifolds are smooth and orientable without boundary, and all sec-
tions of vector bundles are smooth. We also adopt Einstein summation convention in which repeated
indices are implicitly summed over.

2.1 Geometry of Euclidean hypersurfaces

The concepts in this section are explained in depth in most Riemannian geometry textbooks, e.g.
[Lee18]. See [ACGL20, §5] for a setup similar to ours but carried out in greater detail. Our sign
conventions however follow Colding and Minicozzi in [CM12,CM15].

The main objects we study are immersed Euclidean submanifolds of unit codimension. Thus,
we let M be an n-dimensional manifold immersed by a smooth map ϕ : M → Rn+1; that is,
the differential dϕ|p : TpM → Tϕ(p)Rn+1 ∼= Rn+1 is injective for all p ∈ M . Oftentimes we will
require ϕ to be an embedding, i.e. an immersion that is a homeomorphism onto its image. In
both the immersed and embedded cases, we call ϕ(M) a hypersurface.

Define a metric g on M by pulling back the Euclidean inner product 〈·, ·〉 by ϕ, so that g(X,Y ) =

〈dϕ(X), dϕ(Y )〉 for X,Y ∈ Γ(TM). Often we also take 〈·, ·〉 to also mean g(·, ·) when there is
no ambiguity. Taking local coordinates {xi}ni=1 around p ∈ M , we obtain a local tangent frame
{ ∂
∂xi
}ni=1 and cotangent frame {dxi}ni=1. Thus, g is given in components by

gij = g

(
∂

∂xi
,
∂

∂xj

)
=

〈
∂ϕ

∂xi
,
∂ϕ

∂xj

〉
,

where ∂ϕ
∂xi

stands for dϕ( ∂
∂xi

). More generally, a tensor field T ∈ Γ(TM⊗k ⊗ T ∗M⊗l) on M , also
called a (k, l)-tensor, is expressed in components by

T = T i1···ikj1···jl
∂

∂xi1
⊗ · · · ⊗ ∂

∂xik
⊗ dxj1 ⊗ · · · ⊗ dxjl .

We extend g to a metric on (k, l)-tensors by setting

g(S, T ) = gi1p1 · · · gikpkgj1q1gjlqlSi1···ikj1···jl T
p1···pk
q1···ql ,

4



2.1. Geometry of Euclidean hypersurfaces 5

where gij are the elements of the inverse of g when written as a matrix (gij). Every tensor thus
has a norm |T | = g(T, T )1/2. These quantities are independent of the choice of local chart.

The Riemannian volume form on M induced by g (and thus ϕ) is given locally by
√

det(gij) dx
1 ∧ . . . ∧ dxn,

and the associated Riemannian measure on M is given locally by µ =
√

det(gij)Ln, where Ln is
the Lebesgue measure on Rn.

We will be integrating extrinsically defined quantities over M . For a smooth function f : U → R
with ϕ(M) ⊂ U ⊂ Rn+1, define

∫
M f(x) dµ by

∫

M
f(x) dµ =

∫

M
(f ◦ ϕ)(p) dµ =

∫

ϕ(M)
f dHn,

where Hn is the n-dimensional Hausdorff measure on Rn+1 (the second equality is the area
formula; see e.g. [Sim83b, §8]). Thus, x on the left-hand side is understood to mean ϕ(p). When
considering a family of immersions {ϕt} of M , we write dµt in place of dµ to clarify which
measure is integrated against. We omit dµ when only one immersion is at play. In any case, the
meanings of these notations will be clear from context.

The image of dϕ : TM → ϕ∗TRn+1 is the tangent subbundle of the pullback bundle ϕ∗TRn+1,
whose fibrewise orthogonal complement is the normal bundle NM = (dϕ(TM))⊥. Hence,

ϕ∗TRn+1 = dϕ(TM)⊕NM. (2.1)

Since M is orientable, NM is a trivial bundle and we let n ∈ Γ(NM) be the outward-pointing
unit normal vector field on M .

Denoting by ∇ the Euclidean connection (directional derivative) on TRn+1, the map ϕ induces
a pullback connection ϕ∇ on ϕ∗TRn+1 defined by

ϕ∇ : TM × Γ(ϕ∗TRn+1)→ ϕ∗TRn+1, ϕ∇v(ϕ∗Z) = ∇dϕ(v)Z,

for any Z ∈ Γ(TRn+1). Now let X,Y ∈ Γ(TM). Then dϕ(Y ) ∈ Γ(ϕ∗TRn+1) at least locally, so
ϕ∇X(dϕ(Y )) ∈ Γ(ϕ∗TRn+1). By (2.1) and the nonvanishing of n, we can uniquely decompose

ϕ∇X(dϕ(Y )) = dϕ(∇XY ) +A(X,Y )n,

with∇XY ∈ Γ(TM) andA(X,Y ) ∈ C∞(M), at least locally. Then∇ defines an affine connection
on TM , in fact the Levi-Civita connection of (M, g). Meanwhile, A ∈ Γ(T ∗M ⊗T ∗M) defines the
second fundamental form ofM , which is a symmetric (0, 2)-tensor. By convention, the components
of A are denoted hij . Using the musical isomorphism ]p : T ∗pM

∼=→ TpM , we lift A to a (1, 1)-
tensor A] with components hij = gikhkj . Being symmetric, A] is orthogonally diagonalisable at
each point with minus its eigenvalues called the principal curvatures. The mean curvature function
H ∈ C∞(M) is minus the trace of A], that is

H = −hii = −gijhji = −gijhij .

In other words, H(p) is the sum of the principal curvatures at p.
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Let Γkij denote the Christoffel symbols of ∇ in local coordinates. The Weingarten relations read

∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
+ hijn,

∂n

∂xj
= −hjlgls

∂ϕ

∂xs
. (2.2)

Taking inner products with n in the left-hand equation gives a formula for hij ,

hij =

〈
n,

∂2ϕ

∂xi∂xj

〉
= −

〈
∂n

∂xi
,
∂ϕ

∂xj

〉
. (2.3)

The connection ∇ on TM naturally induces connections (also written ∇) on tensor bundles of
TM and T ∗M . We view ∇ as a covariant derivative operator taking (k, l)-tensors to (k, l + 1)-
tensors. For a tensor T = T i1...ikj1...jl

, the components of ∇T are written ∇sT i1...ikj1...jl
= (∇T )i1...iksj1...jl

. We
can also form the iterated covariant derivatives ∇m which take (k, l)-tensors to (k, l +m)-tensors.
Likewise, the components of ∇mT are written ∇s1 · · · ∇smT i1...ikj1...jl

= (∇mT )i1...iks1...smj1...jl
.

The gradient of a function f : M → R, divergence of a vector field X ∈ Γ(TM) and Laplacian of
a tensor T are defined respectively by

∇f = (df)], i.e. g(∇f(p), v) = dfp(v) ∀v ∈ TpM, ∀p ∈M,

divX = tr∇X = ∇iXi,

∆T = tr∇2T = gij∇i∇jT.

The Hessian of f is the (0, 2)-tensor ∇2f .

Of great importance will be the Codazzi equations and Simons’ equation [Sim68],

∇ihjk = ∇jhki = ∇khij , (2.4)

∆hij = −∇i∇jH −Hhilglshsj − |A|2hij . (2.5)

We also need the first variation formula for area:

Proposition 2.1 (First variation). Let ϕ : M → Rn+1 be an immersion, and ϕt : M → Rn+1,
t ∈ (−ε, ε) be a smooth one-parameter family of immersions with ϕ0 = ϕ. Let X = ∂ϕt

∂t

∣∣
t=0

be the
variation vector field along M . If µt is the Riemannian measure on M induced by ϕt, then

d

dt

∣∣∣
t=0

dµt = H 〈X,n〉 dµ. (2.6)

If K ⊂M is compact, then since Area(K, t) = Hn(ϕt(K)) =
∫
K dµt, this gives

d

dt

∣∣∣
t=0

Area(K, t) =

∫

K
H 〈X,n〉 dµ. (2.7)

The formula (2.7) shows that −Hn is the negative L2(µ)-gradient of the Area functional. For all
variations such that the variation field X has L2(µ xK)-norm (

∫
K H

2dµ)1/2, it is X = −Hn that
yields the fastest instantaneous decrease in the area of K. This is the starting point for the mean
curvature flow, which is formally introduced in §3.

2.2 Analysis on Riemannian manifolds

In this section, (M, g) is a Riemannian manifold with Levi-Civita connection ∇. General refer-
ences for the material of this section are [Nic07] and [Eva10].
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2.2.1 Lp, Sobolev and Hölder spaces

Let E be a real vector bundle over M with metric h and compatible connection ∇. Note that
∇ stands for both the connection on TM and on E, but there will be no ambiguity in which
connection ought to be used. The metrics g and h induce metrics on tensor bundles of the form
T ∗M⊗k ⊗E; we also denote these by h. Likewise, these tensor bundles have natural connections
∇ induced from the connections on TM and on E.

For 1 ≤ p ≤ ∞ and a measurable section u : M → E, define

‖u‖Lp(E) =

{{∫
M |u|

p
h

}1/p if 1 ≤ p <∞,
ess supx∈M |u(x)|h if p =∞,

where | · |h = h(·, ·)1/2, and integration takes place against the Riemannian measure of (M, g).
We define Lp(E) to be the Banach space of measurable sections of E for which this norm is finite,
modulo sections which agree a.e.. The space L2(E) is a Hilbert space with inner product

〈u, v〉L2(E) =

∫

M
h(u, v).

Next, we define the Sobolev spaces. For k ∈ N, let (∇k)∗ be the L2-formal adjoint of the operator
∇k, which is defined by requiring that

∫

M
h(∇ku, ψ) =

∫

M
h(u, (∇k)∗ψ) (2.8)

for all compactly supported smooth sections u ∈ Γc(E) and ψ ∈ Γc(T
∗M⊗k ⊗ E). For example,

the divergence operator is minus the L2-formal adjoint of the gradient operator, since
∫

M
g(∇f,X) = −

∫

M
f divX, ∀f ∈ C∞c (M) = Γc(M × R), X ∈ Γc(TM), (2.9)

by Stokes’ Theorem (recall M has no boundary).

We use this to define weak derivatives. Let L1
loc(E) be the space of locally integrable L1 sections

of E, i.e. those in L1(E|K) for every compact K ⊂M . In close analogy to (2.8), for u ∈ L1
loc(E)

and v ∈ L1
loc(T

∗M⊗k ⊗ E), we say that v is the k-th weak derivative of u if

∫

M
h(v, ψ) =

∫

M
h(u, (∇k)∗ψ), ∀ψ ∈ Γc(T

∗M⊗k ⊗ E).

It can be shown that a weak derivative is unique if it exists, so we write ∇ku for the k-th weak
derivative of u. For k ∈ N and p ∈ [1,∞), the Sobolev space W k,p(E) consists of sections
u ∈ Lp(E) such that ∇ju exists and belongs to Lp(T ∗M⊗j ⊗ E) for each j = 1, . . . , k. It is a
Banach space with the norm

‖u‖Wk,p(E) =





k∑

j=0

∥∥∇ju
∥∥p
Lp(T ∗M⊗j⊗E)





1/p

,
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where the induced metric h is used to evaluate the Lp(T ∗M⊗j ⊗ E) norms. We also need that
W k,2(E) is a Hilbert space for each k, with inner product

〈u, v〉Wk,2(E) =
k∑

j=0

〈
∇ju,∇jv

〉
L2(T ∗M⊗j⊗E)

.

Finally, we define Ck and Hölder spaces. For k ∈ N0, let Ck(E) be the space of sections of E
whose (strong) derivatives of order ≤ k exist, and are all bounded and continuous. It is a Banach
space with norm

‖u‖Ck(E) =

k∑

j=0

∥∥∇ju
∥∥
L∞(T ∗M⊗j⊗E)

.

Assuming M is complete and has positive injectivity radius ρ, let ρ0 = min{1, ρ} and define (for
0 < α ≤ 1) the α-Hölder seminorm of a section u by

[u]α;E = sup
x,y∈M

0<d(x,y)<ρ0

|u(x)− Px,yu(y)|h
d(x, y)α

,

where Px,y is the (E,∇)-parallel transport from the fibre above y to the fibre above x, and d(·, ·)
is the distance on M . Then Ck,α(E) is the Banach space of sections in Ck(E) for which the norm

‖u‖Ck,α(E) = ‖u‖Ck(E) + [∇ku]α;T ∗M⊗k⊗E

is finite.

When we write Lp(M), W k,p(M) or Ck,α(M), we are referring to spaces of real-valued functions
on M , i.e. the spaces defined above where E = M ×R is the trivial bundle. We will simply write
Lp, W k,p and Ck,α when there is no ambiguity as to which vector bundle is at use.

2.2.2 Calculus on Banach spaces

Let U and V be Banach spaces, and denote by B(U, V ) the Banach space of bounded linear
operators from U to V endowed with the operator norm. The linearisation (or Fréchet derivative)
of a map f : U → V at u ∈ U , if it exists, is a bounded linear operator df |u ∈ B(U, V ) such that

f(u+ h) = f(u) + df |u(h) + o(‖h‖U ).

The Hessian of f at u is the linearisation of the map U → B(U, V ), x 7→ df |x at u. Thus it is an
operator d2f |u ∈ B(U,B(U, V )), and it is customary to make the identification B(U,B(U, V )) ∼=
B(U×U, V ) whereby d2f |u becomes a bilinear map. Defining higher derivatives similarly, one has
Taylor’s theorem which says that if f is n+1 times continuously differentiable in a neighbourhood
of u, then for ‖h‖U small there exists ε ∈ (0, 1) such that

f(u+ h) = f(u) +

n∑

k=1

1

k!
dkf |u(hk) +

1

(n+ 1)!
dn+1f |u+εh(hn+1), (2.10)

where hk stands for the k-tuple (h, h, . . . , h).
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Let ∇ be the gradient operator on (M, g). We encounter functionals E : C1(M)→ R of the form

E(u) =

∫

M
E(p, u(p),∇u(p)),

where E is a smooth function of (p, q, z) where p ∈M , q ∈ R, and z ∈ TpM .1 The Euler–Lagrange
functional of E with respect to an L2 structure on M is the operator M : C2(M) → C0(M)

defined by

−〈Mu, v〉L2 =
d

ds

∣∣∣
s=0
E(u+ sv), ∀v ∈ C2(M), (2.11)

that is the negative L2-gradient functional of E . For any u ∈ C2(M), the linearisation Lu = DM|u
is a symmetric operator (see §2.2.3) since

〈Luv, w〉L2 =
d

ds

∣∣∣
s=0
〈M(u+ sv), w〉L2 =

d2

dsdt

∣∣∣
s,t=0
E(u+ sv + tw) = 〈v, Luw〉L2 . (2.12)

Appendix A contains some calculations regardingM and L which find use in the thesis.

2.2.3 Ordinary and partial differential equations

Let L be a second-order linear partial differential operator on M . That is, L acts on a (weakly)
twice-differentiable function u locally by

Lu = aij∇i∇ju+ bα∇αu+ cu,

where aij , bα and c are coefficient functions in a chart, and aij = aji. We say that L is (uniformly)
elliptic if there exists C > 0 such that for all p ∈M and ξ ∈ T ∗pM ,

aij(p)ξiξj ≥ C|ξ|2,

where |ξ| uses the norm on T ∗M induced by the metric on M . It can be shown that the left-hand
side is chart-independent, so ellipticity is a well-defined notion.

As in (2.8), L has a unique formal adjoint L∗, defined by requiring that
∫

M
(Lu)v =

∫

M
u(L∗v), ∀v ∈ C∞c (M).

If L = L∗, then L is symmetric. We now state some standard results in elliptic theory. For
Theorems 2.2-2.4 below, we assume that M is compact without boundary and L is symmetric
and uniformly elliptic with smooth coefficients.

Theorem 2.2. L has discrete spectrum with finite multiplicity on W 2,2, and W 2,2 is spanned by a
complete basis of smooth L2-orthonormal eigenfunctions of L.

The next two theorems concern solutions u to the elliptic equation Lu = f , where f is a given
function. This includes weak solutions, which are those which satisfy

∫

M
fv =

∫

M
u(Lv), ∀v ∈ C∞(M).

We write K for the kernel of L, and K⊥ for the L2-orthogonal complement of K.
1That is, (q, z) 7→ E(p, q, z) is smooth for each p ∈M , and (p, q)→ E(p, q,Xp) is smooth whenever X ∈ Γ(TM).
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Theorem 2.3. Let f ∈ L2. Then Lu = f has a weak solution u ∈ W 2,2 if and only if f ∈ K⊥. If a
solution exists, then there is a unique weak solution in W 2,2 ∩ K⊥.

Theorem 2.4 (Schauder estimates). Suppose u and f are such that Lu = f , and α ∈ (0, 1).

(i) If f ∈ Ck,α, then u ∈ Ck+2,α and there exists a constant C such that

‖u‖Ck+2,α ≤ C(‖f‖Ck,α + ‖u‖C0,α).

(ii) If u ∈ Ck+2,α ∩ K⊥, then there exists a constant C such that

‖u‖Ck+2,α ≤ C ‖f‖Ck,α .

The same conclusions hold if we replace Ck+2,α and Ck,α with W k+2,2 and W k,2, respectively.

For the next theorem, we make two changes. Firstly, we allow u, the coefficient functions of L,
and the metric g to be time-dependent. This causes the spatial derivatives ∇i to also be time-
dependent, as they depend on g. Secondly, we allow L to have a nonlinear reaction term. Our
statement comes from [Man11, Theorem 2.1.1] and [ACGL20, Corollary 1.4].

Theorem 2.5 (Parabolic maximum principles). Let g(t), t ∈ [0, T ) be a family of Riemannian
metrics on M , smoothly time-varying in the sense that the components gij(p, t) are smooth functions
in some (hence any) local coordinates. Suppose u : M × [0, T )→ R is smooth and

∂tu ≤ aij∇i∇ju+ bα∇αu+ F (u),

where aij , bα are smooth functions of (p, t) ∈ M × [0, T ) and F : R → R is locally Lipschitz.
Moreover, suppose that aij = aji, and there exists C > 0 such that aij(p, t)ξiξj ≥ C|ξ|2 for all
p ∈M , ξ ∈ T ∗pM and t ∈ [0, T ). Then the following hold:

(i) The function umax(t) = maxp∈M u(p, t) is locally Lipschitz, hence differentiable at almost every
time t ∈ [0, T ) and at every differentiability time,

dumax(t)

dt
≤ F (umax(t)).

(ii) If T ′ ≤ T and h : [0, T ′)→ R solves the initial value problem

h′(t) = F (h(t)), h(0) = umax(0),

then u ≤ h in M × [0, T ′).

(iii) If M is connected and umax(τ) = h(τ) for some τ ∈ (0, T ′), then u = h in M × [0, τ ].

The same conclusions hold if we replace umax with umin and reverse the appropriate inequalities.

Remark 2.6. Part (iii) of the above theorem is the strong maximum principle. For this it suffices
that M is connected and the maximum is attained; compactness is not required.

Finally, we need a basic result concerning ordinary differential inequalities.

Lemma 2.7 (Grönwall’s lemma). Let u and β be real-valued continuous functions defined on an
interval [a, b) where a < b ≤ ∞. If u is differentiable a.e. on (a, b) with u′(t) ≤ β(t)u(t), then

u(t) ≤ u(a) exp

{∫ t

a
β(s) ds

}
, ∀t ∈ (a, b).



Chapter 3

Mean Curvature Flow and Blowups

In this chapter, we introduce the mean curvature flow and the blowup procedure for singularity
analysis. We have reorganised what is available in various books and lecture notes (e.g. [Man11,
ACGL20]), presenting only what is needed for our forthcoming analysis. We will not give full
proofs for all statements in this chapter; these are found in the aforementioned texts. We conclude
by discussing the uniqueness of tangent flows problem and its importance in singularity analysis.
We also recommend [CMP15] for a wonderful non-technical survey of mean curvature flow.

3.1 The mean curvature flow

Mean curvature flow (MCF) is a dynamical system whereby a hypersurface evolves to locally
decrease its area as rapidly as possible. If M is an n-dimensional manifold and ϕ is a time-
dependent immersion of M into Rn+1, then by Proposition 2.1 the area of M locally decreases
as rapidly as possible when the variation field is −Hn. We use this to define the mean curvature
flow of M .

Definition 3.1. Let I ⊂ R be an interval. A one-parameter family of immersions ϕ : M × I →
Rn+1 is a solution to mean curvature flow (MCF) if it satisfies

∂ϕ

∂t
(p, t) = −H(p, t)n(p, t). (3.1)

The true objects of interest are the images ϕt(M) = ϕ(M, t), which are invariant under tangential
diffeomorphisms of M . For this reason, we will allow ∂ϕ

∂t to possess a tangential component in
addition to (3.1), and this leads to a more general definition of MCF.

Definition 3.2. If ϕ : M × I → Rn+1 is a family of immersions satisfying
〈
∂ϕ

∂t
(p, t),n(p, t)

〉
= −H(p, t), (3.2)

then we still consider ϕ to be a solution to MCF. Taking this further, a one-parameter family of
hypersurfaces {Σt}t∈I in Rn+1 is said to flow by MCF if there are immersions ϕt : M → Rn+1 of
a smooth n-manifold M satisfying ϕt(M) = Σt and (3.2).

11
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Minimal hypersurfaces (those with H ≡ 0) are stationary under MCF. As for nontrivial solutions,
we can explicitly write down a few:

Example 3.3. Let Snr be the n-sphere of radius r. Then the shrinking spheres {Sn√
r2−2nt

}t∈[0,r2/2n)

flow by MCF. To see this, one can use the explicit parametrisation

ϕ : Sn1 ×
[
0,
r2

2n

)
→ Rn+1, ϕ(p, t) =

√
r2 − 2nt · p.

Equation (3.1) is easily verified since H(p, t) = n/
√
r2 − 2nt and n(p, t) = p. The maximal time

of existence is r2

2n , when the sphere collapses to a point (one says the flow becomes extinct).
Generalising this, the shrinking cylinders {Sk√

r2−2kt
× Rn−k}t∈[0,r2/2k) flow by MCF, with

ϕ : Sk1 × Rn−k ×
[
0,
r2

2k

)
→ Rk+1 × Rn−k ∼= Rn+1, ϕ(p, x, t) = (

√
r2 − 2kt · p, x).

Example 3.4. The Grim Reaper solution is the one-parameter family of translating plane curves
{

(x, y) ∈ R2 | y = t+ log secx, x ∈
(
−π

2
,
π

2

)}
t∈R

.

Being defined for all t ∈ R, this is an eternal solution.

(a)

(b)

(c)

Figure 3.1: Simple solutions to mean curvature flow. (a) A shrinking sphere, (b) a
shrinking cylinder, (c) the translating Grim Reaper.

Besides these, explicit solutions are in shortage. This urges the development of a short-time
existence theory, which would guarantee the existence of a solution given an initial immersion
of M . Note that the MCF equation (3.1) is formally similar to the heat equation, since by (2.2),

∂ϕ

∂t
= −Hn = gijhijn = gij

(
∂2ϕ

∂xi∂xj
− Γkij

∂ϕ

∂xk

)
= gij∇i∇jϕ = ∆ϕ. (3.3)
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However, ∆ is time-dependent since its coefficients gij depend on ϕt, and this renders the PDE
(3.3) degenerate parabolic (see [Zhu02] or [ACGL20]). Standard parabolic theory cannot apply
to give short-time existence, but it turns out the degeneracies all incarnate in the tangential
directions. Using this and the DeTurck trick, we can turn the more general MCF equation (3.2)
into a parabolic system, which gives short-time existence at least when M is compact.

Theorem 3.5 (Short time existence). If M is compact and ψ : M → Rn+1 is an immersion, then
there exists a solution ϕ to (3.2) defined on a positive interval with ϕ(·, 0) = ψ. Moreover, ϕ is
unique up to reparametrisation at each time. We call ϕ the MCF with initial condition ψ.

The MCF ‘of’ a compact, embedded hypersurface Σ is the MCF with initial condition ι, where
ι : Σ ↪→ Rn+1 is the inclusion. Next, we record two foundational theorems and a corollary.

Theorem 3.6. The MCF of an embedded hypersurface Σ ⊂ Rn+1 remains embedded at all times.

Theorem 3.7 (Avoidance principle). If Σ1 and Σ2 are disjoint compact hypersurfaces in Rn+1,
then the MCFs of Σ1 and Σ2 remain disjoint whenever both flows are defined.

Corollary 3.8. The MCF of a compact hypersurface Σ ⊂ Rn+1 exists only up to a finite time.

Proof. Let Snr be a large sphere centred at the origin strictly enclosing Σ. By Example 3.3, the
MCF of Snr exists for a maximal time interval of length r2/2n. By Theorem 3.7, the MCF of Σ

ceases to exist at or before this amount of time has elapsed.

This shows that singularities are inevitable in compact MCF (i.e. when M is compact), so we
have no choice but to study them. The central object is the singular set S, the set of points in
Rn+1 where singularities appear (we will define this precisely later). For shrinking spheres and
cylinders in R3, S is a point and a line respectively. Does S always take on a nice geometry, or
could it be structured wildly? What is its dimension and degree of regularity? We can also ask
about local properties of S: for example, how does an MCF behave near a singular point p̂ ∈ S
as the singular time is approached? What implications does this have on the geometry of S near
p̂? These questions guide much of today’s research in singularities of the flow.

Shrinking spheres and cylinders are prototypes of self-shrinking MCFs – solutions that contract
around a point in Rn+1 up to reparametrisation. Because (3.2) is invariant under rigid spacetime
translations, understanding all self-shrinking MCFs is a matter of understanding the hypersurfaces
which generate a shrinking flow around the origin for time one. Such hypersurfaces are called
shrinkers, and they are expected to exist in large numbers; nontrivial constructions in R3 include
Angenent’s shrinking torus [Ang92] and those considered by Nguyen [Ngu14]. The eager search
for shrinkers traces back to a classic result of Huisken ([Hui90]; see Theorem 3.27), which
reduces the study of singularities in MCF to that of shrinkers. Hence, it is beneficial to have
multiple characterisations of shrinkers, which the next theorem establishes.

Theorem 3.9. The following are equivalent for an immersion ϕ−1 : M → Rn+1 with H not
identically zero.

(i) ϕ−1 immerses a shrinker. That is, there exists an MCF ϕ satisfying

ϕ : M × [−1, 0)→ Rn+1, ϕ(p, t) = f(t)ϕ−1(p), (3.4)
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where f is a smooth positive function with f(−1) = 1, f ′(t) ≤ 0 and limt↗0 f(t) = 0.

(ii) There exists an MCF ϕ : M × [−1, 0)→ Rn+1 satisfying ϕ(p, t) =
√−t · ϕ−1(p).

(iii) The identity H(p) = 〈ϕ−1(p),n(p)〉
2 holds for all p ∈M .

Proof. (i)⇔ (ii): Suppose (i) holds. By (3.2), for any p ∈M we have

〈
f ′(t)ϕ−1(p),n(p, t)

〉
= 〈∂tϕ(p, t),n(p, t)〉 = −H(p, t) = −H(p,−1)

f(t)
,

so
〈
∂t(f(t)2),n(p, t)

〉
= 〈f(t)f ′(t)ϕ−1(p),n(p, t)〉 = −H(p,−1). Note that n(p, t) is actually

independent of t by (3.4). Assuming p is a point where H(p,−1) 6= 0, we must then have
∂t(f(t)2) independent of t as well. Using the Taylor series of f2 around t = −1, we get that
f is of the form f(t) =

√
c+ α(t+ 1) for some constants c, α. Substituting f(−1) = 1 and

limt↗0 f(t) = 0 gives f(t) =
√−t, which is (ii). Meanwhile, (ii)⇒ (i) is immediate.

(ii)⇔ (iii): If (ii) holds, then by (3.2) we have

H(p, t) = −〈∂tϕ(p, t),n(p, t)〉 =

〈
1

2
√−t · ϕ−1(p),n(p, t)

〉
.

Putting t = −1 yields (iii). Conversely, if (iii) holds, then setting ϕ(p, t) =
√−t · ϕ−1(p) we have

n(p, t) = n(p,−1), so

〈∂tϕ(p, t),n(p, t)〉 =

〈
− 1

2
√−t · ϕ−1(p),n(p,−1)

〉
= − 1√−tH(p,−1) = −H(p, t),

It follows that ϕ is an MCF with initial condition ϕ(p,−1) = ϕ−1(p).

Remark 3.10. Although Theorem 3.9 assumes H does not identically vanish, the minimal hy-
persurfaces H ≡ 0 are easily handled in our applications. We will therefore call any hypersurface
satisfying H(p) = 〈ϕ−1(p),n〉

2 a shrinker.

For an embedded hypersurface Σ ⊂ Rn+1, the implied immersion is the inclusion map, so by the
above theorem, Σ is a shrinker if and only if H = 〈x,n〉

2 for all x ∈ Σ.

3.2 Evolution equations and consequences

In this section, we derive evolution equations of key quantities and use these to deduce basic
properties of MCF. To make sense of the next lemma, if T is a tensor with time-varying compo-
nents T i1···ikj1···jl (t), then its time derivative is a tensor ∂tT with components (∂tT )i1···ikj1···jl = ∂t(T

i1···ik
j1···jl ).

The notation S ∗ T between tensors refers to a contraction of the tensors, possibly involving the
metric. We later need that |S ∗ T | ≤ C|S||T |, where C depends only on n and the structure of
the contraction, and in particular not on p ∈M .
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Lemma 3.11. A mean curvature flow ϕ obeys the following evolution equations:

∂tg = 2HA, ∂tg
ij = −2Hhij , ∂tn = ∇H, (3.5)

∂tA = −∇2H +A2H = ∆A+ 2A2H + |A|2A, (3.6)

∂t|A|2 = ∆|A|2 − 2|∇A|2 + 2|A|4, (3.7)

∂tH = ∆H + |A|2H, (3.8)

∂t|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 +
∑

p+q+r=k|p,q,r∈N

∇pA ∗ ∇qA ∗ ∇rA ∗ ∇kA. (3.9)

Here we define hij = gikgjlhkl and (A2)ij = hilg
lshsj .

These standard computations can be found in [Zhu02] and [Man11] (beware of sign conven-
tions). We derive (3.5), (3.6) and (3.8), in fact in a more general setting:

Lemma 3.12. Let ϕ0 : M → Rn+1 be an immersion, and {ϕt}t∈(−ε,ε) be a normal variation of ϕ0

where each ϕt : M → Rn+1 is also an immersion. Write ∂ϕt
∂t

∣∣
t=0

= fn for the variation field along
M , where f : M → R is smooth. Then the following evolution equations hold at t = 0:

∂tg = −2fA, ∂tg
ij = 2fhij , ∂tn = −∇f, (3.10)

∂tA = ∇2f −A2f, (3.11)

∂tH = −∆f − |A|2f. (3.12)

Proof. In this proof, all partial derivatives with respect to t are taken at t = 0. Keeping in mind
the Weingarten relations (2.2), the metric evolves by

∂

∂t
gij =

∂

∂t

〈
∂ϕt
∂xi

,
∂ϕt
∂xj

〉
=

〈
∂(fn)

∂xi
,
∂ϕ0

∂xj

〉
+

〈
∂ϕ0

∂xi
,
∂(fn)

∂xj

〉

= −
〈
fhilg

ls∂ϕ0

∂xs
,
∂ϕ0

∂xj

〉
−
〈
∂ϕ0

∂xi
, fhjlg

ls∂ϕ0

∂xs

〉
= −fhilglsgsj − fhjlglsgis

= −2fhij ,

that is ∂tg = −2fA. Next, differentiate gij = gisgslg
lj to get

∂tg
ij = (∂tg

is)gslg
lj + gis(∂tgsl)g

lj + gisgsl(∂tg
lj) = 2∂tg

ij + gis(∂tgsl)g
lj .

Hence,
∂tg

ij = −gis(∂tgsl)glj = 2fgishslg
lj = 2fhij . (3.13)

The ∂ϕ0

∂xi
-component of the time derivative of n is

〈
∂n

∂t
,
∂ϕ0

∂xi

〉
= −

〈
n,

∂2ϕ0

∂t∂xi

〉
= −

〈
n,
∂(fn)

∂xi

〉
= − ∂f

∂xi
,

so ∂tn = −∇f . This proves the three equations in (3.10). Using these and (2.3), we compute

∂

∂t
hij =

∂

∂t

〈
n,

∂2ϕt
∂xi∂xj

〉
=

〈
−∇f, ∂2ϕ0

∂xi∂xj

〉
+

〈
n,
∂2(fn)

∂xi∂xj

〉

= −
〈
∂f

∂xl
∂ϕ0

∂xs
gls,Γkij

∂ϕ0

∂xk
+ hijn

〉
+

∂2f

∂xi∂xj
+

〈
n, f

∂

∂xj

(
−hilgls

∂ϕ0

∂xs

)〉

= − ∂f
∂xl

Γkijg
lsgsk +

∂2f

∂xi∂xj
− fhilglshsj =

∂2f

∂xi∂xj
− Γkij

∂f

∂xk
− fhilglshsj

= ∇i∇jf − fhilglshsj ,

(3.14)
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which is the ij-component of ∇2f − fA2. This is (3.11). Finally, (3.13) and (3.14) give

∂tH = ∂t(−gijhij) = −2fhijhij−gij(∇i∇jf−fhilglshsj) = −2f |A|2−∆f+f |A|2 = −∆f−|A|2f,

which is (3.12).

Partial proof of Lemma 3.11. Equations (3.5), (3.6) and (3.8) are immediate from Lemma 3.12
by substituting f = −H and shifting in time to get the evolution equations for all times t. The
second equality in (3.6) follows from the first using Simons’ equation (2.5).

The next three results highlight some geometric consequences of Lemma 3.11.

Proposition 3.13. If the initial hypersurface is compact and mean convex (i.e. H ≥ 0 everywhere),
then every timeslice of its MCF has H ≥ 0. (Thus we may speak of ‘mean convex MCF’.)

Proof. For a contradiction, suppose Hmin < 0 at some time. By the continuity of Hmin and the
initial mean convexity, there is a time interval (t1, t2) in which Hmin(t) < 0 and Hmin(t1) = 0. Let
|A|2 ≤ C in this interval; this is possible by the compactness of M . Combining with (3.8) gives
∂tH ≤ ∆H + CH, so by the maximum principle (Theorem 2.5),

∂tHmin ≥ CHmin, t ∈ (t1, t2) a.e.

If s ∈ (t1, t2), then applying Lemma 2.7 in the interval [s, t2) gives Hmin(t) ≥ eC(t2−s)Hmin(s).
Sending s↘ t1, we get Hmin(t) ≥ 0 for all t ∈ (t1, t2) which is a contradiction.

The next result says that when a compact MCF approaches its maximal time T (which is finite
by Corollary 3.8), it experiences curvature blowup. We skip the proof, instead referring readers
to the references given at the beginning of this chapter.

Theorem 3.14 (Long time existence). If M is compact and ϕ : M × I → Rn+1 is the MCF of M
defined up to a maximal time T <∞, then

lim
t↗T

max
p∈M
|A(p, t)| =∞.

The next proposition quantifies Theorem 3.14, giving a lower bound for the curvature blowup
rate. This bound is sharp; it is attained by shrinking spheres and cylinders.

Proposition 3.15. Let the MCF of a compact hypersurface be defined up to a maximal time T . Then

max
p∈M
|A(p, t)| ≥ 1√

2(T − t)
.

Proof. Write |A|2max = maxp∈M |A(p)|2. The evolution equation (3.7) for |A|2 implies

∂t|A|2max ≤ 2|A|4max (3.15)

at all times, since ∆|A|2 ≤ 0 at the spatial maximum of |A|2. Note that |A|2max is always positive,
else A is identically zero and M is a hyperplane, contradicting the compactness assumption. So
we can divide (3.15) by |A|4max, which gives

−∂t|A|−2
max ≤ 2. (3.16)
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For any times t, s with t ≤ s < T , integrating (3.16) over [t, s] gives

|A(·, t)|−2
max − |A(·, s)|−2

max ≤ 2(s− t).

Sending s→ T , the second term on the left vanishes by Theorem 3.14 and we are left with

|A(·, t)|−2
max ≤ 2(T − t),

which is the result.

3.3 Blowup limits for singularity analysis

In this section, we carry out a blowup procedure to facilitate analysis of the singular set S of an
MCF. We will magnify around a point p̂ ∈ S while approaching the singular time, and extract a
limit hypersurface which models the singularity forming at p̂. We need to address two key issues:

• We need a suitable notion of convergence of hypersurfaces which captures the geometric
nature of the problem. Moreover, this should admit a compactness (i.e. Arzelà–Ascoli type)
theorem to guarantee the existence of a limit hypersurface under mild conditions.

• The rescaling should be performed in such a way that the conditions of said compactness
theorem are satisfied. In particular, we must rid the curvature blowup from Theorem 3.14;
doing this necessitates an ad hoc assumption, the Type I hypothesis. In §3.3.3, we outline
how one removes this troubling assumption to get convergence more generally.

3.3.1 A compactness theorem for submanifolds

This subsection is based on [ACGL20, §11]. See also [AH11, §8] and [Bak] for more details on
convergence of Riemannian manifolds and compactness theorems.

The appropriate notion of convergence for MCF blowup analysis is smooth convergence on compact
subsets for a sequence of smooth immersions. Recall that an exhaustion of a manifold M̃ is a
sequence {Ui}i∈N of open sets in M̃ such that Ui ⊂⊂ Ui+1 for each k and M̃ =

⋃
k∈N Ui.

Definition 3.16. A sequence of immersions φi ∈ C∞(M,Rn+1) of a manifold M converges to a
limit immersion φ ∈ C∞(M̃,Rn+1) of a manifold M̃ smoothly on compact subsets of Rn+1 if two
conditions hold:

(1) There is an exhaustion {Ui}i∈N of M̃ and a sequence of embeddings ιi : Ui → M such
that for each compact subset K ⊂ M̃ and each k ∈ N0, the sequence of immersions
ι∗iφi|K : Ui ∩K → Rn+1 converges in Ck(K,Rn+1) to φ|K : K → Rn+1.

(2) For each R <∞, there exists iR ∈ N such that ι∗iφi(Ui) ∩BR = φi(M) ∩BR for all i ≥ iR,
where BR is the ball of radius R in Rn+1 centred at 0.

With this definition, M and M̃ can be topologically distinct. To illustrate why this is useful for
geometric problems, consider a sequence of embedded circles of increasing radius,

φk : S1 → C ∼= R2, φk(e
iθ) = k · (eiθ + i),
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as in Figure 3.2. It can be shown that φk converges to the inclusion ι : R ↪→ C in the sense of
Definition 3.16, as it intuitively should. On the contrary, we cannot get a limit immersion in the
sense of functions; for example, φk does not converge to an immersion in C∞(S1,C) since S1

cannot immerse onto the entire horizontal axis.

This notion of convergence also admits a compactness theorem which guarantees subconvergence
to a limiting immersion φ : M̃ → Rn+1.

Figure 3.2: Circles of increasing radius converge to the horizontal axis in the sense of
Definition 3.16, but not in C∞(S1,C). Adapted from [ACGL20].

Theorem 3.17. Let φi : M → Rn+1 be a sequence of smooth immersions of a smooth, connected,
compact manifold M , and suppose the following hold.

(1) There is a sequence of points xi ∈M and a constant A <∞ such that φi(xi) ∈ BA for all i.

(2) For each m ∈ N0, there exists a constant Cm <∞ such that

max
p∈M
|∇mi Ai(p)|gi ≤ Cm

for all i, where Ai,∇i and gi are the second fundamental form, Levi-Civita connection and
induced metric on M via φi respectively.

(3) For every R <∞ there exists CR <∞ such that

Hn(BR ∩ φi(M)) ≤ CR

for all i.

Then there exist a smooth n-manifold M̃ , a smooth proper immersion φ : M̃ → Rn+1, and a
subsequence of {φi}i∈N which converges smoothly on compact subsets of Rn+1 to φ.

3.3.2 The rescaled flow and convergence

For the remainder of this chapter, we assume M is compact. Given an initial immersion ϕt0 , the MCF
ϕ : M × [t0, T )→ Rn+1 is uniquely defined up to time T <∞ by Theorem 3.5 and Corollary 3.8.

Proposition 3.15 gives a curvature blowup rate of at least 1√
2(T−t)

. Following Huisken [Hui90],

we shall assume this bound is tight in that there exists K <∞ such that

1√
2(T − t)

≤ max
p∈M
|A(p, t)| ≤ K√

2(T − t)
. (3.17)

This is called the Type I hypothesis, and we say that the MCF is of Type I (or develops a Type I
singularity). This is an ad hoc assumption whose sole purpose to make (i) of Theorem 3.17 hold
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when invoked. Accordingly, a special singular point is a point p ∈ M such that for some fixed
δ > 0 and sequence of times ti → T we have

|A(p, ti)| ≥
δ√

2(T − ti)
.

Remark 3.18. The Type I hypothesis does not immediately imply the existence of a special
singular point. On the other hand, it implies the existence of a singular point, which is a point
p ∈M such that there is a sequence of points pi → p in M and times ti → T with

|A(pi, ti)| ≥
δ√

2(T − ti)
,

for some fixed δ > 0. However, both notions of singular point actually coincide for MCF satisfying
the Type I hypothesis. This result is due to Stone [Sto94] and Le and Sesum [LS11].

Remark 3.19. The caveat is that in most cases, we cannot tell if an MCF is of Type I just by
looking at the initial hypersurface. We therefore endeavour to remove the Type I hypothesis; this
is discussed in the next subsection, but we retain it for now to simplify the convergence proof.

Using the algebraic inequality |H|2 ≤ n|A|2, a first consequence of the Type I hypothesis is that
for any p ∈M and t0 ≤ t ≤ s < T ,

|ϕ(p, s)− ϕ(p, t)| =
∣∣∣∣
∫ s

t

∂ϕ(p, ξ)

∂t
dξ

∣∣∣∣ ≤
∫ s

t
|H(p, ξ)| dξ ≤

∫ s

t

K
√
n√

2(T − ξ)
dξ ≤ K

√
2n(T − t).

(3.18)
This is made arbitrarily small independently of p by bringing t close to T . Thus ϕ(·, t) converges
uniformly as t→ T to a function ϕT : M → Rn+1, which is continuous since each of the ϕ(·, t)’s
are. Using this, we define the singular set S for a Type I MCF by

S = {ϕT (p) | p is a (special) singular point}.

As a shorthand, we will write p̂ = ϕT (p).

Choosing some p̂, we will rescale the MCF around p̂, obtaining a new flow called the rescaled
mean curvature flow (RMCF). Generally we are interested in doing this for p̂ ∈ S to examine the
singularity forming there. In the following definition of RMCF, the rescaling factor is chosen to
offset the curvature blowup rate of Proposition 3.15 when p̂ ∈ S. Time is also rescaled to give a
new time parameter s taking values up to infinity.

Definition 3.20. The rescaled mean curvature flow (RMCF) of a compact MCF ϕ : M × [t0, T )→
Rn+1 around p̂ is the flow ϕ̃ defined by1

ϕ̃(q, s) =
ϕ(q, t(s))− p̂√

T − t(s)
, s = s(t) = − log(T − t),

for (q, s) ∈M × [− log(T − t0),∞).

1Another convention, following Huisken [Hui90], is to have an extra
√

2 factor in the denominator.
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Lemma 3.21. The RMCF ϕ̃ (around a given p̂) has normal speed
〈
∂ϕ̃(q, s)

∂s
, ñ

〉
= −H̃(q, s) +

〈ϕ̃(q, s), ñ〉
2

, (3.19)

where H̃ and ñ are the mean curvature and unit normal on M induced by ϕ̃, respectively. If ϕ̃
immerses M as a shrinker at every time, then the hypersurfaces ϕ̃(M, s) are stationary.

Proof. Since ds
dt = 1

T−t , we compute

∂ϕ̃(q, s)

∂s
=

(
ds

dt

)−1 ∂

∂t

(
ϕ(q, t)− p̂√

T − t

)

=
√
T − t · ∂ϕ(q, t)

∂t
+

1

2

(
ϕ(q, t)− p̂√

T − t

)

= −
√
T − t ·H(q, t)n(q, t) +

1

2
ϕ̃(q, s).

The first term is −H̃(q, s)ñ(q, s) by the definition of RMCF. Taking inner products with ñ gives
(3.19). If ϕ̃ immerses a shrinker at each time, then the right-hand side of (3.19) is zero by
Theorem 3.9. Hence ∂ϕ̃

∂s is always tangential, so the hypersurface in Rn+1 does not change.

The next few lemmas showcase some important properties that the RMCF of a Type I MCF has.
Theorem 3.27 will use these to extract a limit hypersurface as the singularity model at p̂.

Lemma 3.22. Let ϕ be a Type I MCF. Let Ãs, ∇̃s and g̃s be the second fundamental form, Levi-Civita
connection and induced metric on M via ϕ̃(·, s) respectively, where ϕ̃ is the RMCF (around a given
p̂). For each m ∈ N0, there exists Cm = Cm(m,n,K) <∞ such that for all s,

max
p∈M
|∇̃ms Ãs(p)|g̃s < Cm.

Proof. The following calculations are at an arbitary p ∈M , and we suppress the time parameter
s in notation. Using |∇̃mÃ|2g̃ = (T − t)m+1|∇mA|2g, (3.9) and the inequality ab ≤ 1

2(a2 + b2),

∂

∂s
|∇̃mÃ|2g̃ =

(
∂s

∂t

)−1 ∂

∂t

(
(T − t)m+1|∇mA|2g

)

= (T − t)
{
−(m+ 1)(T − t)m|∇mA|2g + (T − t)m+1 ∂

∂t
|∇mA|2g

}

≤ −(m+ 1)|∇̃mÃ|2g̃ + (T − t)m+2
{

∆|∇mA|2g − 2|∇m+1A|2g
+ C(m,n)

∑

p+q+r=m|p,q,r∈N

|∇pA|g|∇qA|g|∇rA|g|∇mA|g
}

(3.20)

= ∆̃|∇̃mÃ|2g̃ − 2|∇̃m+1Ã|2g̃ + C(m,n)
∑

p+q+r=m|p,q,r∈N

|∇̃pÃ|g̃|∇̃qÃ|g̃|∇̃rÃ|g̃|∇̃mÃ|g̃

≤ ∆̃|∇̃mÃ|2g̃ − 2|∇̃m+1Ã|2g̃ + C(m,n)
∑

p+q+r=m|p,q,r∈N

{
|∇̃mÃ|2g̃ + |∇̃pÃ|2g̃|∇̃qÃ|2g̃|∇̃rÃ|2g̃

}
.

Proceed by induction, where the base case is satisfied since (3.17) gives |Ã|g̃ = (T − t)1/2|Ã|g ≤
K/
√

2. Assume we have uniform bounds |∇̃kÃ|g̃ ≤ Ck for k = 0, . . . ,m − 1 where Ck =
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Ck(k, n,K). Then (3.20) becomes

∂

∂s
|∇̃mÃ|2g̃ ≤ ∆̃|∇̃mÃ|2g̃ − 2|∇̃m+1Ã|2g̃ +Bm|∇̃mÃ|2g̃ +Dm, (3.21)

where Bm and Dm depend only on m,n and C0, . . . , Cm−1, thus on m,n,K. By a computation
using (3.21) and the same inequality withm replaced bym−1, we have (see [Man11, Proposition
3.2.9])

∂

∂s
(|∇̃mÃ|2g̃ +Bm|∇̃m−1Ã|2g̃) ≤ ∆̃(|∇̃mÃ|2g̃ +Bm|∇̃m−1Ã|2g̃)−Bm(|∇̃mÃ|2g̃ +Bm|∇̃m−1Ã|2g̃) + Em,

where Em = Em(m,n,K). By the maximum principle (Theorem 2.5), we get that

∂

∂s
max
M

(|∇̃mÃ|2g̃ +Bm|∇̃m−1Ã|2g̃) ≤ −Bm max
M

(|∇̃mÃ|2g̃ +Bm|∇̃m−1Ã|2g̃) + Em,

and Lemma 2.7 now gives an estimate for |∇̃mÃ|2g̃ +Bm|∇̃m−1Ã|2g̃ with exponentially decaying

error in time. Thus |∇̃mÃ|2g̃ +Bm|∇̃m−1Ã|2g̃ is uniformly bounded in space and time by a constant

depending on m,n and K. But |∇̃m−1Ã|g̃ ≤ Cm−1 also, so |∇̃mÃ|g̃ ≤ Cm.

Lemmas 3.24 and 3.25 below will stem from Huisken’s celebrated monotonicity formula:

Lemma 3.23 (Huisken’s monotonicity formula, [Hui90]). Let ϕ be an (unscaled) mean curvature
flow. For x0 ∈ Rn+1 and τ ∈ R, consider a reversed heat kernel ρx0,τ : Rn+1 × (−∞, τ)→ R,

ρx0,τ (x, t) = (4π(τ − t))−n2 e−
|x−x0|

2

4(τ−t) .

Then for all t ∈ [t0,min{τ, T}) we have

d

dt

∫

M
ρx0,τ (x, t) dµt = −

∫

M

(
H − 〈x− x0,n〉

2(τ − t)

)2

ρx0,τ (x, t) dµt ≤ 0,

with equality if and only if ϕ is a self-shrinking MCF about the spacetime point (x0, τ).

Proof. Reparametrising if needed, we may assume ∂tϕ = −Hn. For any smooth function f :

Rn+1 × I → R, we have (by the chain rule and Proposition 2.1)

d

dt

∫

M
f dµt =

d

dt

∫

M
f(ϕ(p, t), t) dµt =

∫

M
(−H 〈∇f,n〉+ ∂tf −H2f) dµt.

The monotonicity formula follows from direct calculation, using f = ρx0,τ . For the last part of the
lemma, we must show that every self-shrinking MCF about (x0, τ) has H = 〈x−x0,n〉

2(τ−t) everywhere.
If (x0, τ) = (0, 0) and we look at the t = −1 timeslice, this is exactly what Theorem 3.9 shows.
For the general case with arbitrary (x0, τ) and t, one can obtain the result by mimicking exactly
the proof of Theorem 3.9.

We will rescale this to get a corresponding monotonicity formula for RMCF. We denote generic
points on the hypersurfaces ϕ̃(M, s) by y, as exemplified in the integrals of the next lemma.
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Lemma 3.24. The RMCF ϕ̃ satisfies a rescaled version of Huisken’s monotonicity formula,

d

ds

∫

M
e−
|y|2

4 dµ̃s = −
∫

M

(
H̃ − 〈y, ñ〉

2

)2

e−
|y|2

4 dµ̃s ≤ 0. (3.22)

As a consequence,
∫ ∞

− log(T−t0)

∫

M

(
H̃ − 〈y, ñ〉

2

)2

e−
|y|2

4 dµ̃s ds ≤
∫

M
e−
|y|2

4 dµ̃− log(T−t0) <∞. (3.23)

Proof. The derivation of (3.22) is a direct computation using Lemma 3.23 and the definition of

RMCF, so we omit it. Since the equality in (3.22) gives that the integral
∫
M e−

|y|2
4 dµ̃s is positive

and nonincreasing, it has a nonnegative limit as s → ∞. Hence, multiplying (3.22) by −1 and
integrating from s = − log(T − t0) to s =∞ gives

∫ ∞

− log(T−t0)

∫

M

(
H̃ − 〈y, ñ〉

2

)2

e−
|y|2

4 dµ̃s ds =

∫

M
e−
|y|2

4 dµ̃− log(T−t0) −
∫

M
e−
|y|2

4 dµ̃∞

≤
∫

M
e−
|y|2

4 dµ̃− log(T−t0) =

∫

M
(T − t0)−

n
2 e
− |x−p̂|

2

4(T−t0) dµt0

≤ (T − t0)−
n
2Hn(ϕt0(M)) <∞,

where the equality in the second line scales back to the original MCF. This proves (3.23).

The art of monotonicity formulae is not so much in their proofs as opposed to deciding what
quantity to show monotonicity for. In our case, Huisken’s monotonicity formula makes the en-
lightening link between blowup limits of (R)MCF and shrinkers. Before seeing this, let us state
an important local area (or volume) bound for RMCF that also uses monotonicity.

Lemma 3.25 ([CM12]). Let s′ > s0 = − log(T − t0). For all s ≥ s′ and x0 ∈ Rn+1, the rescaled
hypersurfaces ϕ̃s(M) satisfy the polynomial volume bound

Hn(BR(x0) ∩ ϕ̃s(M)) ≤ V Rn

for all R > 0, where V depends on s′ and Hn(ϕ̃s0(M)), and in particular not on s nor x0.

Proof. We prove it for the unscaled hypersurfaces ϕt(M). That is, whenever t ≥ t′ > t0 and
x0 ∈ Rn+1, there exists V = V (Hn(ϕt0(M)), t′) such that Hn(BR(x0) ∩ ϕt(M)) ≤ V Rn for all
R > 0. The conclusion for the rescaled hypersurfaces follows by scaling.

Let τ > t ≥ t′ > t0, where τ will be chosen later. We can bound

(4π(τ − t))−n2 e− 1
4Hn(B√τ−t(x0) ∩ ϕt(M)) ≤ (4π(τ − t))−n2

∫

B√τ−t(x0)∩ϕt(M)
e
− |x−x0|

2

4(τ−t)

≤
∫

ϕt(M)
ρx0,τ (x, t) ≤

∫

M
ρx0,τ (x, t0) dµt0 = (4π(τ − t0))−

n
2

∫

ϕt0 (M)
e
− |x−x0|

2

4(τ−t0)

≤ (4π(τ − t0))−
n
2Hn(ϕt0(M)) ≤ (4π(t′ − t0))−

n
2Hn(ϕt0(M)),

where the second inequality in the second line is Lemma 3.23. Rearranging gives

Hn(B√τ−t(x0) ∩ ϕt(M)) ≤
(
τ − t
t′ − t0

)n
2

e
1
4Hn(ϕt0(M)),
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so choosing τ = t+R2 gives the claim with V = (t′ − t0)−
n
2 e

1
4Hn(ϕt0(M)).

Definition 3.26. An immersed hypersurface ψ : M → Rn+1 has polynomial volume growth if
there is a constant V such that for all R > 0 and x0 ∈ Rn+1, we haveHn(BR(x0)∩ψ(M)) ≤ V Rn.

We are ready to state the main theorem of this section, which says that a limit hypersurface not
only exists, but satisfies the shrinker equation and has polynomial volume growth.

Theorem 3.27 ([Hui90]). Let ϕ be a compact Type I MCF, and ϕ̃ its RMCF around a point p̂. For
every sequence of times {si}i∈N with si → ∞, there is a subsequence of {ϕ̃(·, si)} which converges
smoothly on compact subsets of Rn+1 to a proper immersion ϕ̃∞ : M̃∞ → Rn+1 of a hypersurface.

The limit manifold M̃∞ satisfies H̃∞ = 〈y,ñ∞〉
2 at all points, thus is a shrinker by Theorem 3.9 and

Remark 3.10. Moreover, M̃∞ has polynomial volume growth, and for every m ∈ N0 there exists
Cm <∞ such that |∇̃mÃ|g̃ ≤ Cm on M̃∞.

If the initial hypersurface of ϕ was mean convex (H ≥ 0), then so is M̃∞.

If the initial hypersurface of ϕ was embedded, then so is M̃∞.

Proof sketch. The first paragraph of the theorem follows by Theorem 3.17 as long as the family
{ϕ̃(·, si)}i∈N satisfies conditions (1)-(3) listed there. First divide both sides of (3.18) by

√
T − t

and send t ↗ T to get |ϕ̃(p, si)| =
∣∣∣∣
ϕ(p,t(si))−p̂√

T−t(si)

∣∣∣∣ ≤ K
√

2n. Then (1) is fulfilled using xi ≡ p and

R = K
√

2n. The condition (2) is the result of Lemma 3.22, while (3) is Lemma 3.25.

Write Σ̃s = ϕ̃(M, s) and Σ̃∞ = ϕ̃∞(M̃∞). For the second set of claims, we need to use that the
measures HnxΣ̃si weakly-* converge to HnxΣ̃∞, and that limits of integrals over Σ̃si as i→∞
are integrals over Σ̃∞. See [Sto94] or [Man11] for details. Then,

∫

Σ̃∞

(
H̃∞ −

〈y, ñ∞〉
2

)2

e−
|y|2

4 = lim
i→∞

∫

M

(
H̃ − 〈y, ñ〉

2

)2

e−
|y|2

4 dµ̃si = 0,

where the second equality uses (3.23). So H̃∞ = 〈y,ñ∞〉
2 everywhere on Σ̃∞. Lemmas 3.22 and

3.25 give uniform curvature bounds and polynomial volume growth on Σ̃si for all i. These are
all local properties, so the smooth convergence forces Σ̃∞ (equivalently M̃∞) to inherit them. If
the initial hypersurface of ϕ was mean convex, then Proposition 3.13 gives that ϕ, and hence ϕ̃,
is mean convex at all times. By the smooth convergence, Σ̃∞ is also mean convex.

For details on the final part of the theorem, see [Man11, Proposition 3.2.10].

Definition 3.28. A tangent flow of an MCF (with respect to some RMCF) is a limit hypersurface
obtained the above way, that is by passing to a subsequence of times si →∞.

3.3.3 Convergence without the type I hypothesis

Theorem 3.27 says that for a Type I MCF, tangent flows exist and are shrinkers. However, the
Type I hypothesis is largely unverifiable, so it would be awkward to base an entire theory on this.
White [Whi94] and Ilmanen [Ilm95] rectified this by generalising Theorem 3.27 as follows. If



24 Chapter 3. Mean Curvature Flow and Blowups

ϕ is any MCF (not necessarily Type I) and ϕ̃ is its RMCF as in Definition 3.20, then we can still
extract tangent flows in the sense of varifolds, which will be shrinkers in a weak sense.

Varifolds are measure-theoretic generalisations of smooth manifolds, defined as Radon measures
on Euclidean space satisfying certain rectifiability conditions (see [Sim83b]). One can study a
version of MCF for varifolds, called Brakke flow due to Brakke’s original monograph [Bra78].
Every MCF is a Brakke flow, and the concepts of shrinkers, convergence on compact subsets,
the compactness theorem (Theorem 3.17) and Huisken’s monotonicity formula all generalise
to Brakke flows. Using these, White and Ilmanen’s generalisation of Theorem 3.27 says that
rescaling a Brakke flow analogously to RMCF gives subconvergence to varifolds that weakly
satisfy the shrinker equation H = 〈x,n〉

2 . In line with the literature, tangent flows will refer to
these Brakke limits rather than the stronger smooth limits discussed earlier.

One may ask whether the tangent flow is actually a smooth hypersurface, and if so, whether the
convergence is smooth on compact subsets. White [Whi03] showed that for a smooth, embedded,
mean convex MCF, every tangent flow is smooth with unit multiplicity. By Brakke’s regularity the-
orem [Bra78], this implies the convergence is smooth. Thus, in this special case, the convergence
is no different to that of Theorem 3.27, except the Type I hypothesis can be dropped.

Theorem 3.29. If ϕ is a compact, embedded, mean convex MCF, and Σ is a tangent flow of ϕ, then
Σ is a unit multiplicity smooth, embedded, mean convex shrinker with polynomial volume growth
and uniform bounds on A and all covariant derivatives. Convergence to Σ is smooth on compact
subsets of Rn+1.

We also need to mention the compactness theorem for MCFs (see, e.g. [ACGL20, Theorem 11.12]):
for every sequence of ‘nice enough’ MCFs {ϕi : Mi × Ii → Rn+1}i∈N, there is a subsequence
converging to another MCF on compact subsets of Rn+1 × R. A compactness theorem for RMCFs
holds by rescaling. The ‘nice’ conditions to apply these are similar to Theorem 3.17, but we
leave an exact statement to the reference above; we note only that the conditions will be met
whenever we want to use the theorems. Similar compactness theorems hold for Brakke flows and
rescaled Brakke flows using a measure-theoretic notion of convergence [Bra78]. We also remark
that Theorem 3.27 (and its weak generalisation) admits an equivalent formulation in terms of
convergence of a sequence of scaled MCFs (resp. Brakke flows). See, e.g. [ACGL20, Theorem
11.26] for the smooth case. This is why the limits are called tangent flows.

3.4 The uniqueness of tangent flows problem

What do singularities in MCF look like? The RMCF was conceived as a means to answer this
question, and so far this has paid off: by Theorem 3.27 and its weak generalisation they weakly
resemble shrinkers, at least when the initial hypersurface is compact.

The first step in classifying singularities is therefore to classify the shrinkers. We will concentrate
exclusively on the smooth case, henceforth assuming all hypersurfaces are smooth. In dimension
n = 1, a full classification of shrinkers is known: see [AL86, EW87, Hal12]. Less is known for
n ≥ 2, but in all dimensions the only embedded, mean convex shrinkers with polynomial volume
growth are hyperplanes, cylinders and spheres [Hui90,CM12]. Specifically, they are rotations of
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Sk√
2k
×Rn−k for k ∈ {0, . . . , n}.2 This will be proved in §4. It follows by Theorem 3.29 that every

tangent flow arising from a compact, embedded, mean convex MCF is of this type.

To make this classification useful for singularity analysis, we need to address another question.
Recall that tangent flows are limits of an RMCF along a sequence of times si →∞. It could well
be that under different sequences of times, the extracted tangent flows look completely different.
Whether or not this happens is the uniqueness of tangent flows problem.

Question 3.30. Are tangent flows unique? In other words, does a tangent flow obtained from an
RMCF depend on the sequence of times si →∞ along which the limit is extracted?

This is a highly fundamental question. Firstly, uniqueness of tangent flows allows us to equate
singularity classification with shrinker classification. Singularities can be classified by the geo-
metric type of a tangent flow of its RMCF (‘spherical’ or ‘cylindrical’ for instance), but we need
uniqueness of tangent flows to guarantee this classification is even well-defined. Secondly, and
perhaps more importantly, uniqueness tells us a great deal about the structure and regularity
of the singular set S. This could form the basis for sophisticated developments like MCF with
surgery which, up until now, have only enjoyed limited success. See §7 for a discussion.

The first answers to the uniqueness question go back to Huisken [Hui84] and Gage–Hamilton–
Grayson [GH86, Gra87]. Together, they showed that every tangent flow at a singular point of
a convex, embedded MCF is the sphere Sn√

2n
(convexity is not needed for n = 1). Much later,

uniqueness was proved to hold for compact tangent flows [Sch14] and cylindrical tangent flows
[CM15]. These results are detailed in §5 and §6, respectively. Among recent achievements are
the uniqueness of asymptotically conical tangent flows [CS21] and of cylindrical tangent flows
in high codimension [CM19b], which we leave to a discussion in the final chapter. On the other
hand, by the Brakke–White regularity theorem [Whi05], hyperplanes arise as tangent flows if
and only if the flow is rescaled around a nonsingular point. These are indeed unique and while
not hard to prove, a technical setup is still required (see [Man11, Theorem 3.2.22] and discussion
thereafter). We will skip this in favour of proving uniqueness for nontrivial blowups.

We can now give a precise version of Theorem 1.1, the central theorem of this thesis.

Theorem 3.31. Let ϕ be a mean curvature flow of compact, embedded, mean convex hypersurfaces
in Rn+1, and let ϕ̃ be an RMCF of it. There exists k ∈ {0, . . . , n} and a rotation of Rn+1 such that
every tangent flow of ϕ̃ is that rotation of Sk√

2k
× Rn−k. Along every sequence of times si → ∞,

convergence of ϕ̃(·, si) to the tangent flow is smooth on compact subsets of Rn+1.

Proof. By the discussion in this section, all tangent flows of such an MCF are hyperplanes, cylin-
ders and spheres, and these are all unique. Except for uniqueness of planar tangent flows, we
will prove these assertions in the next three chapters (Corollary 4.2, Theorem 5.1 and Theorem
6.1).

2The cases k = 0 and k = n are understood to be hyperplanes and spheres respectively.



Chapter 4

Classification of Mean Convex
Shrinkers

The goal of this chapter is to prove the following classification result.

Theorem 4.1 ([Hui90, CM12]). Let Σ ⊂ Rn+1 be a smooth embedded shrinker with polynomial
volume growth and H ≥ 0 everywhere. Then Σ is a rotation of Sk√

2k
×Rn−k for some k ∈ {0, . . . , n}.

Combining this with Theorem 3.29 immediately gives the following corollary.

Corollary 4.2. Every tangent flow of a compact, embedded, mean convex MCF is a rotation of
Sk√

2k
× Rn−k with unit multiplicity.

In [Hui90], the same classification was achieved assuming |A| is bounded on Σ. While Theorem
3.29 does indeed establish this bound, we present the stronger result since it uses machinery that
will resurface in later chapters. We will first introduce this machinery in §4.1, before turning to
the proof of Theorem 4.1 in §4.2. The exposition in §4.1 is our own, while the statements and
proofs in §4.2 are essentially those of [CM12] with some reorganisation and added detail.

4.1 Some machinery: the F -functional and weighted Lp spaces

Let Σ ⊂ Rn+1 be an embedded hypersurface with polynomial volume growth. Adapting the setup
of §2.1 to our present discussion, the inclusion ι : Σ ↪→ Rn+1 induces a metric g = ι∗gEuc on Σ,
where gEuc is the Euclidean metric on Rn+1. Using this, we get a measure µ =

√
det(gij)Ln on

Σ, where Ln is the Lebesgue measure on Rn, and the coefficients gij are with respect to a local
chart for Σ. Now suppose we repeat this process, replacing gEuc by the Gaussian metric on Rn+1,

gGauss(x) = e−
|x|2
2n gEuc(x), x ∈ Rn+1,

thereby obtaining a new measure ν on Σ. One checks that dν
dµ = e−

|x|2
4 . Polynomial volume

growth leads means Σ has finite weighted volume (or Gaussian area):

ν(Σ) =

∫

Σ
dν =

∫

Σ
e−
|x|2

4 dµ =

∞∑

R=1

∫

(BR\BR−1)∩Σ
e−
|x|2

4 dµ ≤
∞∑

R=1

V Rne−
(R−1)2

4 <∞. (4.1)

26
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In the MCF literature, the F -functional is (4π)−
n
2 times the Gaussian area:

F(Σ) = (4π)−
n
2 ν(Σ) = (4π)−

n
2

∫

Σ
e−
|x|2

4 ,

where the last integral is evaluated against dµ. Note that F is nonincreasing during an RMCF by
Huisken’s monotonicity formula, Lemma 3.24.

To make F a genuine functional, we reformulate F as being defined on sections of the normal
bundle of a fixed hypersurface Σ, which are identified with real-valued functions on Σ. Since
Σ has normal injectivity radius δ > 0,1 every C1 function ψ with supΣ |ψ| < δ gives rise to an
embedded C1 hypersurface Σψ = {x + ψ(x)n(x) : x ∈ Σ}. Thus, we define FΣ as a genuine
functional Bδ(0) ∩ C1(Σ)→ R by

FΣ(ψ) = F(Σψ) = (4π)−
n
2

∫

Σψ

e−
|x|2

4 . (4.2)

Small C1 norm ensures this is finite (see §B.2). The next theorem extends the characterisation
of shrinkers in Theorem 3.9 when assuming polynomial volume growth.

Theorem 4.3. Embedded shrinkers in Rn+1 with polynomial volume growth are precisely the em-
bedded minimal hypersurfaces in Rn+1 with respect to the Gaussian area functional.

Proof. Let Σ be an embedded shrinker with polynomial volume growth. We show that the zero
function is a critical point of the FΣ-functional. Letting ψ ∈ C1(Σ), we have

d

dε

∣∣∣
ε=0
FΣ(εψ) =

d

dε

∣∣∣
ε=0

(4π)−
n
2

∫

Σεψ

e−
|x|2

4

=
d

dε

∣∣∣
ε=0

(4π)−
n
2

∫

Σ
e−
|x+εψ(x)n(x)|2

4 dµεψ

= (4π)−
n
2

∫

Σ

(
ψe−

|x|2
4 · −1

2
〈x,n(x)〉+Hψe−

|x|2
4

)

= (4π)−
n
2

∫

Σ

(
H − 〈x,n(x)〉

2

)
ψe−

|x|2
4 ,

(4.3)

where the third equality uses (2.6) with X = ψn. This vanishes for all ψ if and only if H(x) =
〈x,n(x)〉

2 on Σ, which is precisely when Σ is a shrinker by Theorem 3.9.

Theorem 4.3 motivates the use of tools from minimal surfaces to study shrinkers, and by extension
singularities in mean curvature flow. Huisken’s monotonicity formula is already one example;
there is a monotonicity formula in minimal surfaces which is used to characterise blowup limits
of minimal surfaces as minimal cones (see [CM11]). To go further with this, we need to introduce
Gaussian versions of some functional-analytic tools.

In this chapter, we exclusively use the (Gaussian-)weighted spaces Lp(Σ). For 1 ≤ p ≤ ∞, we
define Lp(Σ) as the Banach space of measurable functions u : Σ→ R for which the norm

‖u‖Lp(Σ) =





{∫
Σ |u(x)|pe− |x|

2

4

}1/p

if 1 ≤ p <∞,

ess supx∈Σ |u(x)| if p =∞,
1Embedded Euclidean submanifolds have nonzero normal injectivity radius; see [Lee12, Theorem 6.24].
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is finite. Like in the unweighted case, L2(Σ) is a Hilbert space with inner product

〈u, v〉L2(Σ) =

{∫

Σ
uve−

|x|2
4

}1/2

. (4.4)

As in §2.2.1, the weighted Sobolev spaces W k,p are defined using these weighted Lp norms. The
Hölder spaces Ck,α are the same as the unweighted ones since the L∞ norm has not changed.

An important operator is the Ornstein–Uhlenbeck operator L : C2(Σ)→ C0(Σ), given by

L = ∆− 1

2
〈x,∇(·)〉Rn+1 = e

|x|2
4 div

(
e−
|x|2

4 ∇(·)
)
, (4.5)

where ∆ and ∇ are the Laplacian and gradient on Σ respectively. This is the weighted analogue
of the Laplacian in the following sense. Recall that ∆ = div ◦∇, and div is minus the formal
L2(µ)-adjoint of ∇ by (2.9). If we let δ be the formal L2(ν)-adjoint of ∇, then L = δ ◦∇. We will
need the following properties of L in the sequel.

Proposition 4.4 ([CM12]). Let Σ ⊂ Rn+1 be an embedded hypersurface with polynomial volume
growth, and let L be the Ornstein-Uhlenbeck operator defined in (4.5).

(i) If u ∈W 1,2 is compactly supported and v ∈W 2,2,
∫

Σ
u(Lv)e−

|x|2
4 = −

∫

Σ
〈∇u,∇v〉 e−

|x|2
4 . (4.6)

(ii) If u ∈W 1,2 and v ∈W 2,2, not necessarily compactly supported, and
∫

Σ
(|u∇v|+ |∇u||∇v|+ |uLv|)e−

|x|2
4 <∞,

then (4.6) still holds. In particular, this holds if u, v ∈W 2,2, so L is self-adjoint on W 2,2.

(iii) L has discrete spectrum with finite multiplicity on W 2,2, and W 2,2 is spanned by a complete
basis of smooth L2-orthonormal eigenfunctions.

Next, letMν
Σ : C2(Σ)→ C0(Σ) be the L2(ν) Euler–Lagrange functional of FΣ, defined by

d

ds

∣∣∣
s=0
FΣ(u+ sv) = −(4π)−

n
2

∫

Σ
vMν

Σ(u)e−
|x|2

4 . (4.7)

We also need the stability operator L : C2(Σ)→ C0(Σ), given by

L = ∆ + |A|2 +
1

2
− 1

2
〈x,∇(·)〉Rn+1 = L+ |A|2 +

1

2
. (4.8)

This is an elliptic operator whose importance stems from the following fact.

Proposition 4.5. If Σ is an embedded shrinker, then L is the linearisation of Mν
Σ at zero. As a

consequence, for any ψ ∈ C2(Σ), one has

d2

dε2

∣∣∣
ε=0
FΣ(εψ) = −(4π)−

n
2 〈ψ,Lψ〉L2(Σ) .

This is proved in Appendix B.2. Hence, if L is negative definite, then the shrinker Σ is not only
a critical point for the FΣ-functional, but locally minimises FΣ. If this is so, we call Σ a stable
shrinker. This mirrors the notion of stable minimal hypersurfaces in unweighted space (there the
stability operator is ∆ + |A|2 + Ric(n,n); see [CM11]). This plays a central role in Colding and
Minicozzi’s framework of generic mean curvature flow which will be discussed in §7.1.
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4.2 Proof of Theorem 4.1

Throughout this section, Σ is an embedded shrinker with polynomial volume growth. We will
impose H ≥ 0 later. We first collect some facts about the stability operator L defined by (4.8).

Lemma 4.6. On Σ we have LH = H and LA = A, where L extends to tensors in the natural way.
Furthermore, if |A| does not vanish, then

L|A| = |A|+ |∇A|
2 − |∇|A||2
|A| ≥ |A|. (4.9)

Proof. Working in an orthonormal frame {e1, . . . , en} at a point p ∈ Σ, the Christoffel symbols
vanish at p, so ∇ coincides with the Euclidean directional derivative ∇. Also gij = δij at p.
Differentiating the shrinker equation 2H = 〈x,n〉, we get (at p)

2∇jH = ∇j 〈x,n〉 = 〈ej ,n〉+ 〈x,−hjlel〉 = −hjl 〈x, el〉 . (4.10)

with an implicit sum over l = 1, . . . , n. The second equality uses (2.2) with ϕ being the inclusion
ι : Σ ↪→ Rn+1. Differentiating again and keeping in mind that ∇iel = hiln by (2.2),

2∇i∇jH = −∇i(hjl 〈x, el〉) = −∇ihjl 〈x, el〉 − hjl 〈ei, el〉 − hjlhil 〈x,n〉
= −∇ihjl 〈x, el〉 − hij − 2Hhjlhil.

Substituting this into Simons’ equation (2.5), we have

∆hij = −∇i∇jH −Hhilhjl − |A|2hij =
1

2
∇ihjl 〈x, el〉+

1

2
hij − |A|2hij . (4.11)

Since ∇ihjl = ∇lhij by Codazzi’s equations (2.4), the above equation reads

∆A =
1

2
〈x,∇A〉+

1

2
A− |A|2A = −LA+ ∆A+A,

so LA = A at p. Since traces commute with covariant derivatives (owing to the metric being
parallel, ∇g = 0), taking the negative trace of LA = A gives LH = H. To get (4.9), we first
recall that ∆ = tr∇2 and derive a Laplacian chain rule on functions:

∆(f ◦ h) = tr∇((f ′ ◦ h)∇h) = tr((f ′ ◦ h)∇2h+ (f ′′ ◦ h) 〈∇h,∇h〉)
= (f ′ ◦ h)∆h+ (f ′′ ◦ h)|∇h|2.

(4.12)

Taking f = (·)1/2 and h = |A|2, this gives

L|A| = ∆|A|+
(
|A|2 +

1

2

)
|A| − 1

2
〈x,∇|A|〉

=
∆|A|2
2|A| −

|∇|A|2|2
4|A|3 +

(
|A|2 +

1

2

)
|A| − 1

4

〈
x,
∇|A|2
|A|

〉

=
2 〈A,∆A〉+ 2|∇A|2

2|A| − 4|A|2|∇|A||2
4|A|3 +

(
|A|2 +

1

2

)
|A| − 1

2|A| 〈A,∇xA〉

=
〈A,LA〉
|A| +

|∇A|2 − |∇|A||2
|A| .

Since LA = A, this gives the equality in (4.9). The inequality is due to the elementary Kato
inequality |∇|A|| ≤ |∇A|.
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The second ingredient we need is an estimate whose proof is a simple calculation and we omit.

Lemma 4.7. For all hypersurfaces, it holds at points with |A| 6= 0 that
(

1 +
2

n+ 1

)
|∇|A||2 ≤ |∇A|2 +

2n

n+ 1
|∇H|2.

For the rest of this section, we reserve the notation [·] for weighted integrals over Σ, i.e.

[f ] =

∫

Σ
fe−

|x|2
4 .

The next three lemmas are integral estimates for curvature-related quantities on shrinkers with
positive mean curvature. The Peter-Paul inequality, 2ab ≤ εa2 + ε−1b2 for any ε > 0, will be used
many times in the proofs.

Lemma 4.8. If H > 0 on Σ, then for any φ ∈W 1,2 and ε > 0 it holds that

[(1− ε)φ2|∇ logH|2 + φ2|A|2] ≤
[

1

ε
|∇φ|2 +

1

2
φ2

]
.

Proof. Recalling that L = ∆− 1
2 〈x,∇(·)〉, apply (4.12) and LH = H to get

L logH =
∆H

H
− |∇H|

2

H2
− 1

2

〈x,∇H〉
H

= −|∇ logH|2 +
∆H − 1

2 〈x,∇H〉
H

=
LH − |A|2H − 1

2H

H
− |∇ logH|2 =

1

2
− |A|2 − |∇ logH|2.

(4.13)

Thus, for any compactly supported smooth function η, we have η ∈W 1,2 so Proposition 4.4 gives

[
〈
∇η2,∇ logH

〉
] = −[η2L logH] =

[
η2(|A|2 − 1

2
+ |∇ logH|2)

]
. (4.14)

At the same time, we use Cauchy–Schwarz and Peter-Paul to get

|
〈
∇η2,∇ logH

〉
| = 2| 〈∇η, η∇ logH〉 | ≤ 1

ε
|∇η|2 + εη2|∇ logH|2 (4.15)

for any ε > 0. Joining (4.14) and (4.15), we obtain

[(1− ε)η2|∇ logH|2 + η2|A|2] ≤
[

1

ε
|∇η|2 +

1

2
η2

]
. (4.16)

Let ηr be one on Br and decay linearly to zero from ∂Br to ∂Br+1. Applying (4.16) to η = ηrφ,
taking r →∞ and applying the monotone convergence theorem gives the result.

The following lemma adapts Schoen, Simon and Yau’s integral curvature estimates for stable
minimal surfaces [SSY75] to strictly mean convex shrinkers. The proof strategy is the same; see
also [CM11, Theorem 2.21].

Lemma 4.9. If H > 0 on Σ, then [|A|2 + |A|4 + |∇|A||2 + |∇A|2] <∞.
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Proof. The hard part is proving [|A|4] <∞, so we will do this first. Let φ be a compactly supported
smooth function on Σ. Applying Lemma 4.8 with ε = 1, we get a ‘stability inequality’2

[φ2|A|2] ≤
[
|∇φ|2 +

1

2
φ2

]
.

Set φ = η|A| where η is smooth with compact support, 0 ≤ η ≤ 1, and |∇η| ≤ 1. Then

[η2|A|4] ≤
[
|∇(η|A|)|2 +

1

2
η2|A|2

]

≤
[
η2|∇|A||2 + 2|η||∇|A|| · |∇η||A|+ |∇η|2|A|2 +

1

2
η2|A|2

]

≤ (1 + ε)[η2|∇|A||2] +

[
|A|2

(
(1 + ε−1)|∇η|2 +

1

2
η2

)]

≤ (1 + ε)[η2|∇|A||2] +

[(
3

2
+

1

ε

)
|A|2

]
,

(4.17)

where ε > 0 is arbitrary, and the third inequality uses Peter-Paul with η|∇|A|| and |∇η||A|. We
will bound the first term on the right by a small multiple of [η2|A|4] and other harmless terms;
this will come from a Simons-type inequality which we now derive.

For a general function f , one has

Lf2 = 2f∆f + 2|∇f |2 − 1

2

〈
x,∇f2

〉
= 2|∇f |2 + 2fLf.

Together with L = L− |A|2 − 1
2 , the equality in Lemma 4.6, and Lemma 4.7, we get

L|A|2 = 2|∇|A||2 + 2|A|
(
L|A| − |A|3 − 1

2
|A|
)

= 2|∇A|2 + |A|2 − 2|A|4

≥ 2

(
1 +

2

n+ 1

)
|∇|A||2 − 4n

n+ 1
|∇H|2 + |A|2 − 2|A|4,

(4.18)

which is our Simons-type inequality.3 Integrating against 1
2η

2, we have
[

1

2
η2L|A|2

]
≥
[(

1 +
2

n+ 1

)
η2|∇|A||2 − 2n

n+ 1
|∇H|2 − η2|A|4

]
. (4.19)

Using Proposition 4.4 followed by Cauchy–Schwarz and Peter-Paul with η|∇|A|| and |A||∇η|, and
finally the assumption |∇η| ≤ 1, the left-hand side satisfies
[

1

2
η2L|A|2

]
= −

[
1

2

〈
∇η2,∇|A|2

〉]
= −[2 〈η∇η, |A|∇|A|〉] ≤ [εη2|∇|A||2 + ε−1|A|2], (4.20)

where ε > 0 is again arbitrary. Substituting this into (4.19) and rearranging gives

[η2|A|4] +

[
2n

n+ 1
|∇H|2 +

1

ε
|A|2

]
≥
(

1 +
2

n+ 1
− ε
)

[η2|∇|A||2]. (4.21)

2The stability inequality for minimal hypersurfaces is
∫

Σ
φ2|A|2 ≤

∫
Σ
|∇φ|2, cf. [CM11, Lemma 1.32].

3Simons’ inequality is ∆|A|2 ≥ 2
(
1 + 2

n

)
|∇|A||2 − 2|A|4, cf. [Sim68] or [CM11, Lemma 2.1].



32 Chapter 4. Classification of Mean Convex Shrinkers

Combining (4.17) and (4.21), we now get

[η2|A|4] ≤ 1 + ε

1 + 2
n+1 − ε

{
[η2|A|4] +

[
2n

n+ 1
|∇H|2 +

1

ε
|A|2

]}
+

[(
3

2
+

1

ε

)
|A|2

]

≤ 1 + ε

1 + 2
n+1 − ε

[η2|A|4] + C[|∇H|2 + |A|2],

where C = C(n, ε). Select ε = 1
2(n+1) , so that 1+ε

1+ 2
n+1
−ε < 1. Then

[η2|A|4] ≤ C[|∇H|2 + |A|2] ≤ C[|A|2(1 + |x|2)], (4.22)

where C = C(n) and the last inequality uses |∇H| ≤ |A||x| from (4.10). Next, the polynomial
volume growth gives that

√
1 + |x|2 ∈W 1,2. To see this, we have ∇(

√
1 + |x|2) = x>√

1+|x|2
where

x> is the projection of x onto TxΣ, so reasoning as in (4.1),

∥∥∥
√

1 + |x|2
∥∥∥
W 1,2

=

∫

Σ

(
1 + |x|2 +

|x>|2
1 + |x|2

)
e−
|x|2

4 ≤
∫

Σ
(2 + |x|2)e−

|x|2
4 <∞.

Hence Lemma 4.8 applies with φ =
√

1 + |x|2 and ε = 1 to give

[|A|2(1 + |x|2)] ≤
[∣∣∣∇(

√
1 + |x|2)

∣∣∣
2

+
1

2
(1 + |x|2)

]
≤
∥∥∥
√

1 + |x|2
∥∥∥
W 1,2

<∞.

By (4.22), we therefore have [η2|A|4] < ∞. Taking a sequence of η’s and using monotone
convergence (as in the end of the proof of Lemma 4.8), we have [|A|4] <∞.

It follows that [|A|2] < ∞. To establish [|∇|A||2] < ∞, use (4.21) with ε = 1, the finiteness of
[|A|4] and [|A|2], as well as |∇H|2 ≤ |A|2|x|2. Monotone convergence again gives the bound. It
remains to show [|∇A|2] <∞. By integrating the second equality in (4.18) against 1

2η
2, we get

[
1

2
η2L|A|2

]
=

[
η2|∇A|2 +

1

2
η2|A|4 − η2|A|4

]
≥
[
η2(|∇A|2 − |A|4)

]
.

Following (4.20) but stopping short of Peter-Paul, we have [1
2η

2L|A|2] ≤ 2[|A||∇|A||]. Thus,

[η2(|∇A|2 − |A|4)] ≤ 2[|A||∇|A||] ≤ [|A|2 + |∇|A||2].

Since we already have [|A|2 + |∇|A||2 + |A|4] <∞, the bound [|∇A|2] <∞ follows again from
monotone convergence.

The final lemma before the proof of Theorem 4.1 gives integral estimates which are needed to
justify various applications of Proposition 4.4(ii) in the proof.

Lemma 4.10. If H > 0 on Σ, then the following hold:

[|A|2|∇ logH|+ |∇|A|2| · |∇ logH|+ |A|2|L logH|] <∞, (4.23)

[|A| · |∇|A||+ |∇|A||2 + |A| · |L|A||] <∞. (4.24)
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Proof. Since H > 0, Lemma 4.9 gives

[|A|2 + |A|4 + |∇|A||2 + |∇A|2] <∞. (4.25)

Since |∇|A|2|2 ≤ 2|A|2 + 2|∇|A||2 by the chain rule and Peter-Paul, the first and third terms of
(4.25) show that |A| ∈W 1,2. We may then apply Lemma 4.8 with φ = |A|, ε = 1/2 to get

[|A|2|∇ logH|2] ≤ 2

[
2|∇|A||2 +

1

2
|A|2

]
≤ 4

[
|∇|A||2 + |A|2

]
<∞, (4.26)

the last inequality being (4.25). Peter-Paul then yields

[|∇|A|2| · |∇ logH|] = 2[|A| · |∇|A|| · |∇ logH|] ≤ [|A|2|∇ logH|2 + |∇|A||2] <∞. (4.27)

Also, (4.13) and (4.26) together give us that

[|A|2|L logH|] ≤
[

1

2
|A|2 + |A|4 + |A|2|∇ logH|2

]
<∞. (4.28)

Adding (4.26), (4.27) and (4.28) gives (4.23). Next, using (4.8) and the equality in Lemma 4.6,

|A|L|A| = |A|
(
L|A| − |A|2|A| − 1

2
|A|
)

=
1

2
|A|2 − |A|4 + |∇A|2 − |∇|A||2.

Using this, Peter-Paul and (4.25), we arrive at (4.24):

[|A| · |∇|A||+ |∇|A||2 + |A| · |L|A||] ≤
[

1

2
|A|2 − 1

2
|∇|A||2 +

1

2
|A|2 − |A|4 + |∇A|2

]
<∞.

Proof of Theorem 4.1. It suffices to prove the theorem assuming Σ is connected. If not, then since
every connected component of Σ will be one of the hypersurfaces listed in the theorem, and any
two such hypersurfaces intersect, this contradicts the fact that Σ is smooth and embedded.

Starting from (4.11), use Codazzi’s equations ∇ihjl = ∇lhij then trace both sides with gij to get

∆H =
1

2
〈x, el〉∇lH +

1

2
H − |A|2H ≤ H +

1

2
〈x,∇H〉 ,

where the inequality uses H ≥ 0. By Theorem 2.5 and the fact that H ≥ 0, we have that either
H = 0 everywhere or H > 0 everywhere. If H = 0 everywhere, then the shrinker equation is
〈x,n〉 = 2H = 0, so x is a tangent vector field on Σ. Pick any p ∈ Σ and solve for the flow of x
starting from p. The flow line traces the ray {λp | λ > 0}, so Σ is a cone.4 Being smooth, Σ must
be a hyperplane through the origin, i.e. a rotation of Rn ⊂ Rn+1.

We may therefore assume H > 0, proceeding in two steps. Firstly, we use Lemma 4.10 to bring
us to the key identity ∇khij = ckhij , where ck depends only on k and the point on Σ. Because
the indices on the left can be permuted by Codazzi’s equations, this indicates that Σ has a high
degree of symmetry, consistent with the theorem. The second step follows Huisken [Hui93],
where this identity is massaged into a full classification of the possibilities for Σ.

4The rays do not include the origin, but Σ is a closed subset of Rn+1 so it must contain the origin.
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Step 1: The key geometric identity. The first statement in Lemma 4.10 allows us to apply
Proposition 4.4 to |A|2 and logH. Doing this then using (4.13), we get

[
〈
|∇|A|2,∇ logH

〉
] = −[|A|2L logH] =

[
|A|2

(
|A|2 − 1

2
+ |∇ logH|2

)]
.

Similarly, the first statement in Lemma 4.10 allows us to apply Proposition 4.4 to two copies of
|A|. Doing this then using L|A| ≥ |A| from Lemma 4.6, we get

[|∇|A||2] = −[|A|L|A|] = −
[
|A|
(
L|A| − |A|2|A| − 1

2
|A|
)]
≤
[
|A|4 − 1

2
|A|2

]
.

Combining these two gives

[
〈
|∇|A|2,∇ logH

〉
] ≥ [|A|2|∇ logH|2 + |∇|A||2],

or

0 ≥ [|A|2|∇ logH|2 − 2 〈∇|A|, |A|∇ logH〉+ |∇|A||2] =

[∣∣∣|A|∇ logH −∇|A|
∣∣∣
2
]
.

Therefore, |A|∇ logH − ∇|A| vanishes identically on Σ. Rewriting this as ∇ logH = ∇ log |A|
and integrating out, we get H = β|A|, where β : Σ→ R is positive. In particular L|A| = βLH =

βH = |A|, so by Lemma 4.6 we have |∇A|2 = |∇|A||2. This implies ∇khij = ckhij for each
i, j, k = 1, . . . , n. Contracting with gij , we also immediately get ck = ∇kH

H .

Step 2: Squeezing out a classification. Pick a point p ∈ Σ, and work in a coordinate chart
where at p we have hij = λiδij for some constants λi. Then ∇khij = ckhij = ckλiδij , which
vanishes if i 6= j. By Codazzi’s equations, we even have that ∇khij = 0 unless i = j = k. Note
that if λi 6= 0 and j 6= i, then 0 = ∇jhii = cjλi, so cj = 0. Thus, if two or more of the λi’s are
zero, then all of the cj ’s are zero, hence ∇A = 0 at p. We have thus shown that

(∗) If A(p) has rank two or greater, then ∇A(p) = 0.

We therefore divide into two cases depending on the rank of A at p.

Case 1: The rank is at least two. We will show that rank(A) ≥ 2 everywhere. Where q ∈ Σ is
arbitrary, let λ1(q) and λ2(q) be the two eigenvalues of A(q) of largest absolute value, and define

Σ2 = {q ∈ Σ | λ1(q) = λ1(p) and λ2(q) = λ2(p)}.

Since λ1 and λ2 are continuous and Σ2 is defined by a closed condition, Σ2 is closed. Since
λ1(p), λ2(p) 6= 0, for any point q ∈ Σ2 we have rank(A(q)) ≥ 2. This is an open condition, so
there exists an open set Ω containing q where rank(A(·)) ≥ 2. But this implies ∇A = 0 on Ω, so
the eigenvalues of A are constant on Ω. It follows that Ω ⊂ Σ2, so Σ2 is open. Now Σ2 is a closed
and open subset of the connected set Σ, hence Σ2 = Σ.

It follows by (∗) that ∇A = 0 over all of Σ. Using Theorem 4 of Lawson [Law69], Σ splits
isometrically as some rotation of Skr × Rn−k. For such a cylinder, H = k

r . On the other hand, the
shrinker equation gives H = 〈x,n〉

2 = r
2 . Equating these yields r =

√
2k.

Case 2: The rank is one. From above, the rank of A must be one everywhere on Σ, so the only
nonzero eigenvalue is −H, as H = − trA. For each p ∈ Σ, let V (p) ∈ TpΣ be a unit (−H)-
eigenvector for A. As A is smooth, V is a smooth vector field at least locally (globally it is defined
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up to a sign). Regardless of sign, at each tangent space we have

A(v, w) = A(〈v, V 〉V, 〈w, V 〉V ) = −H 〈v, V 〉 〈w, V 〉 . (4.29)

Fix some p ∈ Σ, choose a frame {ei}ni=1 such that e1(p) = V (p) and the matrix of A(p) in this
frame is diag(−H(p), 0, . . . , 0). Then ∇khij = 0 except possibly when i = j = k = 1, so at p,

∇uA(v, w) = ∇〈u,V 〉VA(〈v, V 〉V, 〈w, V 〉V ) = −∇VA(V, V )

H
〈u, V 〉A(v, w), (4.30)

where the second equality uses linearity and (4.29). Since p was arbitrary and the right-hand side
of (4.30) is unchanged under substituting V 7→ −V , this identity holds at every point. Taking a
unit speed geodesic γ(t) on Σ and a parallel vector field v(t) on Σ along γ(t), this gives

d

dt
A(v(t), v(t)) = ∇γ̇(t)A(v(t), v(t)) = −∇VA(V, V )

H
〈v(t), V 〉A(v(t), v(t)), (4.31)

whereH and V are evaluated at γ(t). Selecting v(0) to be in the kernel ofA at γ(0), then applying
Lemma 2.7 to (4.31), we find that A(v, v) vanishes along γ(t). Using (4.30), we have that at
γ(t), 〈

∇γ̇v,n
〉

= 〈∇γ̇v +A(γ̇, v)n,n〉 = A(γ̇, v) = 0. (4.32)

At the same time, v being parallel along γ implies that for any tangent vector X,

〈
∇γ̇v,X

〉
= 〈∇γ̇v,X〉 = 〈0, X〉 = 0. (4.33)

From (4.32) and (4.33), we see that v(t) is actually constant along γ. By the arbitrariness of
γ(t) and v(t) and recalling that A has an (n − 1)-dimensional kernel everywhere, we conclude
that there are n − 1 constant vectors e2, . . . , en tangent to Σ constituting a global orthonormal
frame for the kernel of A. These directions are precisely the noncurved ones, so translations
in these directions are isometries of Σ. Thus, Σ splits isometrically as a product K × γ̃, where
K = span{e2, . . . , en} and γ̃ ⊂ R2 is a smooth, embedded, convex shrinker in R2 with polyno-
mial length growth. A short argument ([CM12, Lemma 10.39]) followed by the Gage-Hamilton
theorem [GH86] shows that γ̃ must be a round circle.5 Arguing as in the end of Case 1, the
radius must be

√
2.

5See [Man11, Proposition 3.4.1] for another way of proving this part.



Chapter 5

Uniqueness of Compact Tangent Flows

From the discussion in §3.4, the utility of a shrinker classification result for singularity analysis in
MCF lays contingent on the uniqueness of tangent flows. In this chapter, we will prove Schulze’s
result [Sch14] that uniqueness indeed holds for compact, embedded tangent flows.

Theorem 5.1 ([Sch14]). Let Σ be a unit multiplicity tangent flow arising from a compact, embedded
MCF. If Σ is smooth, compact and embedded, then it is the unique tangent flow at that point.

When the MCF is also mean convex, Theorem 5.1 implies uniqueness of spherical tangent flows,
which are the only compact blowups by Corollary 4.2. The theorem however has no convexity
assumptions, so it holds for peculiar examples like Angenent’s shrinking torus [Ang92] whenever
it arises as a tangent flow. In fact, Schulze proved Theorem 5.1 for MCF and Brakke flows in
arbitrary codimension. The proof is easily adapted from the unit codimension case, but we will
exclude this as we have not formally introduced these flows.

In §5.1, we discuss Łojasiewicz inequalities and their relation to uniqueness problems. To tackle
uniqueness of tangent flows, we need to generalise these to infinite-dimensional ‘spaces of hyper-
surfaces’. This is done in §5.2, where we follow Simon’s influential paper [Sim83a] to prove the
now-called Łojasiewicz–Simon gradient inequality. In §5.3, we will see how Schulze used this
inequality to prove Theorem 5.1.

5.1 Łojasiewicz inequalities and uniqueness

Between the late 1950s and early 1960s, Łojasiewicz proved a collection of deep results in real
algebraic geometry concerning real-analytic functions and their gradient flows [Łoj63, Łoj65].
Let f : U → R be real-analytic on an open subset U of Rn, and denote by Z the zero set of f ,
assumed nonempty. The first of these results states that for any compact subset K of U , there
exist α ≥ 2 and a positive constant C1 such that for all x ∈ K,

inf
z∈Z
|x− z|α ≤ C1|f(x)|. (5.1)

36
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Using this inequality, Łojasiewicz further proved that if p ∈ U is a critical point of f , then there
exists a neighbourhood W of p and constants β ∈ (1

2 , 1) and C2 > 0 such that for all x ∈W ,

|f(x)− f(p)|β ≤ C2|∇f(x)|. (5.2)

Łojasiewicz used this second inequality (the gradient inequality) to prove the Łojasiewicz theorem:
with the same assumptions on f , suppose γ : [0,∞) → Rn is a negative gradient flow line of f .
That is, γ′(t) = −∇f(γ(t)). If γ has an accumulation point x∞, then γ has finite length and

lim
t→∞

γ(t) = x∞.

In other words, x∞ is the unique limit of γ as t→∞.

How Łojasiewicz’s results relate to uniqueness of tangent flows draws from an important obser-
vation: the RMCF ϕ̃ is the negative gradient flow of the F -functional. To make this precise, let
Σs be the image of ϕ̃(·, s), and letMν

s be the L2(ν) Euler–Lagrange functional of FΣs . That is,

d

dt

∣∣∣
t=0
FΣs(u+ tv) = −(4π)−

n
2

∫

Σs

vMν
s(u)e−

|x|2
4 .

From (4.3), we see thatMν
s(0) = −H + 〈x,n〉

2 . But this is equal to ∂ϕ̃
∂s by Lemma 3.21. Thus, at all

times, ∂ϕ̃∂s is the negative L2(ν)-gradient of FΣs at the zero function. Viewing F as the Gaussian
area functional on the ‘space of hypersurfaces’, this means ϕ̃ flows by the negative gradient of F .

The idea is to work in a space whose points are hypersurfaces in Rn+1, so that F is defined on
this space. The RMCF is the negative gradient flow of F , and traces a curve in this space whose
accumulation points are its tangent flows. If the Łojasiewicz theorem generalises to functionals
on this space, then applying it to F results in uniqueness of tangent flows. See Figure 5.1.

space of
hypersurfaces

F

Σ: tangent flow

ϕ̃(s): RMCF

Figure 5.1: RMCF is the negative gradient flow of F in the space of hypersurfaces. We
want to generalise the Łojasiewicz theorem to functionals on this space (in particular
F) to prove that tangent flows, like Σ here, are unique.

Any reasonable manifestation of the ‘space of hypersurfaces’ must be infinite-dimensional, so we
are led to ask which infinite-dimensional spaces admit generalisations of Łojasiewicz’s results.
Leon Simon [Sim83a] made the first stride in this direction, generalising the Łojasiewicz inequal-
ities to Hölder sections of vector bundles over a compact Riemannian manifold M . In the same
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paper, he used these Łojasiewicz–Simon inequalities (as they are now named) to generalise the
Łojasiewicz theorem and exhibited a number of geometric applications, most notably to prove a
long-standing conjecture about uniqueness of tangent cones for minimal hypersurfaces. Thirty
years later, Schulze recognised the opportunity to apply Simon’s results in the setting of mean
curvature flow, giving Theorem 5.1.

In view of our applications, we will prove the Łojasiewicz–Simon gradient inequality for real-
valued functions on M . For the proof, we will take the original gradient inequality (5.2) as given.
This is because the original Łojasiewicz inequalities are known to be notoriously difficult to prove,
requiring specialised machinery well beyond the scope of this thesis. Unlike the previous chapter,
all Lp and Sobolev norms in this chapter are unweighted.1

5.2 The Łojasiewicz–Simon gradient inequality

In this section, (M, g) is a compact n-dimensional Riemannian manifold with Levi-Civita connec-
tion ∇. Let E : C1(M)→ R be a functional satisfying Assumption 5.2 below.

Assumption 5.2. The functional E : C1 → R can be written as

E(u) =

∫

M
E(p, u(p),∇u(p))

for some smooth real-valued function E of (p, q, z) where p ∈M , q ∈ R and z ∈ TpM . Also,

(i) For each p ∈M , we have that E is uniformly convex in the z variable when q = 0. That is,

d2

ds2

∣∣∣
s=0

E(p, 0, sz) ≥ c|z|2, ∀z ∈ TpM. (5.3)

with c > 0 independent of p, z.

(ii) There exists δ > 0 such that for each p, the dependence of E(p, q, z) on (q, z) is real-analytic
whenever |q|, |z| < δ.

LetM be the (unweighted) Euler–Lagrange functional of E , defined in (2.11). From §A.1, uni-
form convexity (5.3) implies that the linearisation L ofM at 0 is a symmetric, uniformly elliptic
second-order operator with smooth coefficients. By 2.2, the kernel K of L is finite-dimensional
and has an L2-orthonormal basis of smooth eigenfunctions ϕ1, . . . , ϕd. We will let Π and (·)⊥
denote L2-orthogonal projection onto K and K⊥ respectively.

Analyticity of E allows us to make sense of E(p, q, z) for q ∈ C and z ∈ TpMC where |q|, |z| < δ,
and the subscript C denotes complexification. Moreover, the dependence on (q, z) is holomorphic
in this region. Using the explicit expression (A.1) for M, we extend M to complex-valued
functions u ∈ C2,α

C with ‖u‖C1
C
< δ. In particular,M is defined on C2,α

C ∩Bδ(0).

Under these assumptions, Simon’s generalisation of (5.1) and (5.2) becomes possible. We will
only prove the analogue of the latter, which is what we need later. We fix an arbitrary constant
α ∈ (0, 1) for the rest of this chapter.

1This may seem strange given that we motivated the use of Łojasiewicz inequalities using the weighted spaces, but
this is more of an artefact of the analysis than a conceptual discrepancy.
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Theorem 5.3 ([Sim83a]). SupposeM(0) = 0. There is a neighbourhood U of the origin in C2,α

and constants β ∈ (1
2 , 1) and C > 0 depending on n, M and the form of E such that if u ∈ U , then

|E(u)− E(0)|β ≤ C ‖M(u)‖L2 .

The proof we present amalgamates the ones in [Sim83a] and [Sim96]. Most of the work goes
into the next lemma, which is part of a procedure called Lyapunov-Schmidt reduction.

Lemma 5.4. There exists a neighbourhood U of the origin in C2,α, a neighbourhood W of the origin
in C0,α, and a real-analytic bijection Ψ : W → U such that Πu ∈W ∩K whenever u ∈ U , and

‖Ψf −Ψg‖W 2,2 ≤ C ‖f − g‖L2 , ∀f, g ∈W, (5.4)

‖ΨΠu−Πu‖W 2,2 ≤ C ‖Πu‖2L2 , ∀u ∈ U. (5.5)

Here C depends on n, M and the form of E . Moreover, if we define W̃ = {ξ = (ξ1, . . . , ξd) ∈ Rd |
ξjϕj ∈W ∩K} and f(ξ) = E(Ψ(ξjϕj)), then

|∇f(ξ)| ≤ 2
∥∥MΨ(ξjϕj)

∥∥
L2 , ∀ξ ∈ W̃ . (5.6)

Remark 5.5. With a little more work (see [Sim83a]), we can show that

{u ∈ U | M(u) = 0} = Ψ
({
ξjϕj | ξ ∈ W̃ and ∇f(ξ) = 0

})
, (5.7)

so Q = Ψ(W ∩K) contains all zeros ofM near the origin. Since W ∩K is finite-dimensional and
consists of zeros of L (the derivative ofM) near the origin, Ψ is an ‘exponential map’ identifying
zeros of L with zeros ofM near the origin. This way, Q is a finite-dimensional submanifold of U
(see Figure 5.2). This is the essence of Lyapunov-Schmidt reduction; it finitely parametrises the
set of critical points of E (i.e. zeros ofM) near the origin. We would need to explicitly use (5.7)
to generalise the first Łojasiewicz inequality (5.1), but this is not needed for Theorem 5.3.

To prove Theorem 5.3, we will decompose |E(u)− E(0)| into an infinite-dimensional part and a
finite-dimensional part by writing

|E(u)− E(0)| ≤ |E(u)− E(ΨΠu)|+ |E(ΨΠu)− E(0)|.

The original gradient inequality (5.2) controls the finite-dimensional part |E(ΨΠu)−E(0)|, while
a separate argument will show that the infinite-dimensional part is negligible. Note that (5.5) says
ΨΠu ≈ Πu, so we have Q ≈W ∩K. Thus, the finite-dimensional part is almost |E(Πu)−E(0)|, a
difference taken in the direction ofK, while the infinite-dimensional part is almost |E(u)−E(Πu)|,
a difference taken in the direction of K⊥. This idea will be revisited in §6.4.

Proof of Theorem 5.3 assuming Lemma 5.4. Let U , W , W̃ , Ψ and f be as in Lemma 5.4. We may
further assume that U is convex and ‖u‖C2,α ≤ 1 for all u ∈ U . We first estimate the infinite-
dimensional part |E(u)− E(ΨΠu)|. Taking u ∈ U , we have Πu ∈W . Then ΨΠu ∈ U and so

|E(u)− E(ΨΠu)| =
∣∣∣∣
∫ 1

0

d

ds
E(u+ s(ΨΠu− u)) ds

∣∣∣∣

=

∣∣∣∣
∫ 1

0
〈M(u+ s(ΨΠu− u)),ΨΠu− u〉L2 ds

∣∣∣∣ ,
(5.8)
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u

ΨΠu

Πu 0
W ∩K

Q

U

Ψ

Figure 5.2: Ψ exponentiates W ∩K as a finite-dimensional submanifold Q of U . We
use this to split E(u)− E(0) into finite-dimensional and infinite-dimensional parts.

by the definition ofM. Since ‖u+ s(ΨΠu− u)‖C2,α ≤ 1 for all s ∈ [0, 1], Proposition A.3 gives

‖M(u+ s(ΨΠu− u))−M(u)‖L2 ≤ Cs ‖ΨΠu− u‖W 2,2 ,

where C is a constant depending on n,M and the form of E . This dependence will remain, but
C can change from line to line. Using the above in (5.8), we bound

|E(u)− E(ΨΠu)| ≤
∫ 1

0
‖M(u+ s(ΨΠu− u))−M(u)‖L2 ‖ΨΠu− u‖L2 ds

+

∫ 1

0
‖M(u)‖L2 ‖ΨΠu− u‖L2 ds

≤ C ‖ΨΠu− u‖2W 2,2 + ‖M(u)‖L2 ‖ΨΠu− u‖W 2,2

≤ C ‖Mu‖2L2 ,

(5.9)

where the last inequality is (5.4) with f = Πu, g = Nu.

Now we estimate the finite-dimensional part |E(ΨΠu) − E(0)|. We have Πu = ξjϕj for some
ξ ∈ W̃ , so by (5.6), Proposition A.3 and (5.4),

|∇f(ξ)| ≤ 2 ‖M(ΨΠu)‖L2 ≤ 2 ‖Mu‖L2 + 2 ‖M(ΨΠu)−Mu‖L2

≤ 2 ‖Mu‖L2 + C ‖ΨΠu− u‖W 2,2 ≤ C ‖Mu‖L2 .

Since f is analytic, (5.2) gives β ∈ (1
2 , 1) and C such that |f(ξ)− f(0)|β ≤ C|∇f(ξ)|. Thus

|E(ΨΠu)− E(0)|β = |f(ξ)− f(0)|β ≤ C|∇f(ξ)| ≤ C ‖Mu‖L2 . (5.10)

Since M : C2,α → C0,α is continuous,M(0) = 0, and U is contained in the unit ball in C2,α,
there exists σ > 0 so that ‖Mu‖C0,α ≤ σ. Since M is compact and has finite measure, we have

‖Mu‖L2 ≤ C ‖Mu‖L∞ ≤ C ‖Mu‖C0,α ≤ Cσ ≤ C. (5.11)
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Using the elementary inequality |a+ b|β ≤ 2β(|a|β + |b|β), then (5.9), (5.10), (5.11), we get

|E(u)− E(0)|β ≤ C(|E(u)− E(ΨΠu)|β + |E(ΨΠu)− E(0)|β)

≤ C(‖Mu‖2β
L2 + ‖Mu‖L2)

≤ C ‖Mu‖L2 .

This is the required inequality.

It remains to prove Lemma 5.4.

Proof of Lemma 5.4. We proceed in four parts. The first part constructs Ψ, and the next three
parts prove (5.4), (5.5) and (5.6) in that order.

Step 1: The function Ψ. Define N : C2,α → C0,α by

Nu = Πu+Mu. (5.12)

Since Π is linear, the linearisation of N at 0 is

dN|0(v) = Πv + Lv,

which is symmetric and elliptic, just as L is. Note that dN|0 has trivial kernel on C2; indeed if
dN|0(v) = 0, then Πv = −Lv, but Πv ∈ K while −Lv ∈ K⊥, so we have Lv = 0 = Πv. But the
first equality implies v ∈ K while the second implies v ∈ K⊥. Hence, v = 0. By Theorem 2.2,
this implies dN|0 has trivial kernel on W 2,2, not just C2. Thus, elliptic theory (Theorem 2.3 and
Theorem 2.4) gives that dN|0 is an isomorphism from C2,α to C0,α.

Viewing M as defined on C2,α
C ∩ Bδ(0), its linearisation exists at any point in this domain by

the explicit formula for M in (A.1) and the holomorphicity of E noted earlier. Thus, M is
holomorphic on C2,α

C ∩Bδ(0), and so too is N . Since dN|0 : C2,α → C0,α is an isomorphism from
the last paragraph, dN|0 : C2,α

C → C0,α
C is also an isomorphism.

Applying an appropriate version of the inverse function theorem [Nir01, Theorem 2.7.2] to the
holomorphic map N : C2,α

C ∩Bδ(0)→ C0,α
C , we get that N that bijects from a neighbourhood UC

of 0 in C2,α
C ∩Bδ(0) onto a neighbourhood WC of 0 in C0,α

C , with holomorphic inverse ΨC = N−1.
Setting U = C2,α ∩ UC and W = C2,α ∩WC, the function ΨC restricts to a bijective real-analytic
map Ψ : W → U . Note that U ⊂ C2,α ∩Bδ(0).

In the next three steps, we successively shrink U and W so that (5.4)-(5.6) hold. Whenever we
shrink U , it is understood that W is shrunk accordingly to keep Ψ : W → U a bijection, and vice
versa when we shrink W . All constants C below depend on n, M and the form of E .

Step 2: Establishing (5.4). Let f, g ∈ W and write u = Ψf, v = Ψg. We have u, v ∈ U , so
‖u‖C2 , ‖v‖C2 < δ. Thus, Proposition A.3 gives

Mu−Mv = L(u− v) + aij(u− v)ij + bα(u− v)α + c(u− v),

where subscripts denote partial derivatives, and |a| + |b| + |c| ≤ C(‖u‖C2 + ‖v‖C2). Since f =

NΨf = Πu+Mu, and similarly g = Πv +Mv, the above identity can be written

Π(v − u) + L(v − u) = aij(u− v)ij + bα(u− v)α + c(u− v) + g − f. (5.13)
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Projecting both sides onto K using the L2 inner product, and noting that L takes values in K⊥
(Theorem 2.3), we get

Π(v − u) = ΠF,

where F is the right-hand side of (5.13). Thus we obtain the L2 estimate

‖Π(v − u)‖L2 = ‖ΠF‖L2 ≤ ‖F‖L2 ≤ C(‖u‖C2 + ‖v‖C2) ‖u− v‖W 2,2 + ‖g − f‖L2 .

But the finite-dimensionality of K means the L2 and W 2,2 norms on K are equivalent, so we get

‖Π(v − u)‖W 2,2 ≤ C(‖u‖C2 + ‖v‖C2) ‖u− v‖W 2,2 + C ‖g − f‖L2 . (5.14)

Similarly, projecting both sides of (5.13) onto K⊥ gives

L((v − u)⊥) = F⊥.

Therefore, Theorem 2.4 comes in to give the estimate

‖(v − u)⊥‖W 2,2 ≤ C‖F⊥‖L2 ≤ C ‖F‖L2 ≤ C(‖u‖C2 + ‖v‖C2) ‖u− v‖W 2,2 + ‖g − f‖L2 . (5.15)

Putting (5.14) and (5.15) together, we get

‖u− v‖W 2,2 ≤ ‖Π(u− v)‖W 2,2 + ‖(u− v)⊥‖W 2,2

≤ C(‖u‖C2 + ‖v‖C2) ‖u− v‖W 2,2 + C ‖g − f‖L2 .

Shrinking W so that f, g ∈W guarantees C(‖u‖C2 +‖v‖C2) < 1
2 , this gives the required estimate.

Step 3: Establishing (5.5). Now consider the set Ũ = {u ∈ U | Πu ∈W}. We will prove that:

(i) Ũ is a neighbourhood of the origin in C2,α.

(ii) For all u ∈ Ũ we have ‖ΨΠu−Πu‖W 2,2 ≤ C ‖Πu‖2L2 .

We will then shrink U down to Ũ so that (5.5) and the claim u ∈ U ⇒ Πu ∈W ∩K hold. By (i),
U will still remain a neighbourhood of the origin in C2,α.

To prove (i), take any u ∈ U and estimate

‖Πu‖C0,α ≤ C ‖Πu‖L2 ≤ C ‖u‖L2 ≤ C ‖u‖L∞ ≤ C ‖u‖C2,α . (5.16)

The first expression makes sense since K contains only smooth functions (therefore admitting
the C0,α norm). The first inequality uses the equivalence of norms on K by finite-dimensionality,
and the third inequality uses the compactness of M . Since W is a neighbourhood of 0 in C0,α,
(5.16) implies that as long as ‖u‖C2,α is sufficiently small, then Πu ∈W . This proves (i).

To prove (ii), let u ∈ Ũ and apply (5.4) with f = Πu and g = Nu to get

‖ΨΠu− u‖W 2,2 = ‖ΨΠu−ΨNu‖W 2,2 ≤ C ‖Πu−Nu‖L2 = C ‖Mu‖L2 , (5.17)

where the last equality is (5.12). Next, we reason exactly as in (5.16) to estimate

‖Πu‖C2,α ≤ C ‖Πu‖L2 ≤ C ‖u‖L2 ≤ C ‖u‖L∞ ≤ C ‖u‖C2,α .



5.2. The Łojasiewicz–Simon gradient inequality 43

If we shrink Ũ enough, then for u ∈ Ũ this estimate makes ‖Πu‖C2,α small enough to ensure
Πu ∈ U , and we also have Π(Πu) = Πu ∈ W . This means Πu ∈ Ũ , so (5.17) comes into effect
with u replaced by Πu, giving

‖ΨΠu−Πu‖W 2,2 ≤ C ‖MΠu‖L2 . (5.18)

We need to further bound this by C ‖Πu‖2L2 . Using Taylor’s theorem (2.10) onM centred at the
origin in C2, there exists s∗ ∈ [0, 1] such that

MΠu =M(0) + LΠu+
1

2
d2M|s∗Πu(Πu,Πu) =

1

2
d2M|s∗Πu(Πu,Πu).

This yields (sinceM is C2)

‖MΠu‖L∞ ≤
1

2

∥∥d2M|s∗Πu(Πu,Πu)
∥∥
L∞
≤ 1

2
sup
s∈[0,1]

∥∥d2M|sΠu
∥∥

op
‖Πu‖2C2 ≤ C ‖Πu‖2C2 , (5.19)

where ‖·‖op here is the operator norm on bilinear forms C2 × C2 → C0. Combining (5.18) and
(5.19) then using the equivalence of norms on K, we get

‖ΨΠu−Πu‖W 2,2 ≤ C ‖MΠu‖L2 ≤ C ‖MΠu‖L∞ ≤ C ‖Πu‖2C2 ≤ C ‖Πu‖2L2 ,

which proves (ii). Now we shrink U down to Ũ as mentioned at the start of this step.

Step 4: Establishing (5.6). A consequence of (5.5) is that

d(Ψ ◦Π)|0 = Π. (5.20)

To see why, suppose h ∈ L2 has small L2 norm. Then ‖Πh‖L2 and ‖Πh‖C2,α are both small. Thus,
for h near the origin in L2 we get Πh ∈ U , so (5.5) gives

‖(Ψ ◦Π)h− (Ψ ◦Π)(0)−Πh‖L2 = ‖ΨΠh−Πh‖L2 ≤ ‖ΨΠh−Πh‖W 2,2

= ‖ΨΠ(Πh)−Π(Πh)‖W 2,2 ≤ C ‖Πh‖2L2 ≤ C ‖h‖2L2 = o(‖h‖L2),

which is precisely what (5.20) means.

Let W̃ = {ξ = (ξ1, . . . , ξd) ∈ Rd | ξjϕj ∈ W ∩K}, and define f : Rd → R by f(ξ) = E(Ψ(ξjϕj)).
Then for each η ∈ Rd and ξ ∈ W̃ , we have

〈η,∇f(ξ)〉Rd =
d

ds

∣∣∣
s=0

f(ξ + sη) =
d

ds

∣∣∣
s=0
E(Ψ(ξjϕj + sηjϕj))

= −
〈
M(Ψ(ξjϕj)), dΨ|ξjϕj (ηjϕj)

〉
L2

= −
〈
M(Ψ(ξjϕj)), (dΨ|ξjϕj −Π)(ηjϕj)

〉
L2
−
〈
M(Ψ(ξjϕj)), η

jϕj
〉
L2 .

(5.21)

Since Ψ is real-analytic, dΨ is locally Lipschitz, but we can simply restrict W (hence U) to make
dΨ Lipschitz on its domain. Now (5.20) gives the estimate

∥∥∥(dΨ|ξjϕj −Π)(ηjϕj)
∥∥∥
L2

=
∥∥∥(dΨ|ξjϕj − dΨ|0)(ηjϕj)

∥∥∥
L2
≤ C|ξ||η|. (5.22)

The second inequality uses the fact that all p-norms are equivalent, so |η|1 ≤ C|η|2 = C|η|. Let
us now choose η = ∇f(ξ)

|∇f(ξ)| so that by (5.21), (5.22) and the Cauchy–Schwarz inequality,

|∇f(ξ)| ≤ (1 + C|ξ|)
∥∥M(Ψ(ξjϕj))

∥∥
L2 .

Shrinking W̃ (hence W and U accordingly) so that C|ξ| ≤ 1, this yields (5.6).
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5.3 Proof of Theorem 5.1

We will now prove Theorem 5.1, following [Sch14]. We seem to be able to find some minor
simplifications to the original proof, which hopefully makes our presentation more lucid. On the
other hand, our Lemma 5.7 expands on important details which are absent in the original, and
these details tie in heavily with Appendix B.

In this section, Σ ⊂ Rn+1 is a fixed compact, embedded shrinker. The key step is to show that if
an RMCF has Σ as a tangent flow, then it eventually becomes a small C2,α graph over Σ forever.
Uniqueness will follow easily. This is a consequence of two lemmas: the first says that a C2,α

graphical bound for RMCF can be extended in time as long as the L2 norm remains small.

Lemma 5.6. Given σ0 > 0, there exists δ > 0 so that if {Σs}s∈[τ,∞) is a family of hypersurfaces
evolving by RMCF, and Σs is the graph over Σ for s ∈ [τ, τ + 1] of a smooth function u(·, s) (herein
written u(s)) with

sup
s∈[τ,τ+1]

‖u(s)‖C2,α ≤ σ0 and sup
s∈[τ,τ+1]

‖u(s)‖L2 ≤ δ,

then Σs is the graph over Σ for s ∈ [τ, τ + 2] of an extension ũ of u in time, with

sup
s∈[τ,τ+2]

‖ũ(s)‖C2,α ≤ σ0.

Proof. If this were false, then there is a sequence of RMCFs {Γ(k)
s }s∈[τ,∞),k∈N so that the following

holds. For each k, we have that Γ
(k)
s is the graph over Σ for s ∈ [τ, τ + 1] of a smooth function

u(k)(·, s) with

sup
s∈[τ,τ+1]

‖u(k)(s)‖C2,α ≤ σ0 and sup
s∈[τ,τ+1]

‖u(k)(s)‖L2 ≤ 1

k
, (5.23)

but there is no extension ũ(k) of u(k) to time s ∈ [τ, τ + 2] so that Γ
(k)
s is the graph of ũ(k) with

sup
s∈[τ,τ+2]

‖ũ(k)(s)‖C2,α ≤ σ0. (5.24)

By the compactness theorem for rescaled Brakke flows (see §3.3.3), there is a subsequence Γ
(ki)
s ,

ki →∞, converging to another rescaled Brakke flow Γ in a suitable Brakke sense. We argue that
the convergence is in fact smooth. To see this, note that each u(k) satisfies a parabolic equation by
Proposition B.3. We may therefore use parabolic bootstrapping to turn the uniform C2,α bound
of (5.23) into uniform C`,α bounds for each ` ∈ N, say

sup
s∈[τ,τ+1]

‖u(k)(s)‖C`,α ≤ σ`. (5.25)

for each k. By (5.23), we have u(ki)(·, s)|s∈[τ,τ+1] → 0 in L2(Σ× [τ, τ + 1]). Coupled with (5.25),
this implies the convergence also holds in C`−1(Σ× [τ, τ + 1]) for each `, and therefore in C∞.

It follows that the limit rescaled Brakke flow Γ is actually a smooth RMCF coinciding with the
static RMCF Σ during the time interval [τ, τ + 1]. But this implies Γ coincides with Σ forever by
the uniqueness of RMCF (this is the rescaled version of Theorem 3.5). Since every timeslice of
Γ is smooth with unit multiplicity, Brakke’s regularity theorem [Bra78] implies the convergence
Γ

(ki)
s → Γ is smooth on compact subsets of Rn+1 × R. This contradicts (5.24).
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The second lemma uses the Łojasiewicz–Simon gradient inequality to bound the L2 change over
time for a graphical RMCF over Σ. This upper bound becomes arbitrarily small for large enough
times, so it is later used to realise the L2 condition of Lemma 5.6.

Lemma 5.7. There exist σ0 > 0, θ ∈ (0, 1
2) and C > 0 depending on n so that if Σs is an RMCF in

Rn+1 for s ∈ [τ1, τ2], and Σs is the graph over Σ for each s of a smooth function u(·, s) with

sup
s∈[τ1,τ2]

‖u(s)‖C2,α ≤ σ0,

then

sup
s∈[τ1,τ2]

‖u(s)− u(τ1)‖L2 ≤
∫ τ2

τ1

∥∥∥∥
∂u

∂s

∥∥∥∥
L2

ds ≤ C

θ
(FΣ(u(τ1))−FΣ(0))θ. (5.26)

Proof. The first inequality in (5.26) comes from

sup
s∈[τ1,τ2]

‖u(s)− u(τ1)‖L2 = sup
s∈[τ1,τ2]

∥∥∥∥
∫ s

τ1

∂u

∂τ
dτ

∥∥∥∥
L2

≤ sup
s∈[τ1,τ2]

∫ s

τ1

∥∥∥∥
∂u

∂τ

∥∥∥∥
L2

dτ ≤
∫ τ2

τ1

∥∥∥∥
∂u

∂τ

∥∥∥∥
L2

dτ,

so it remains to prove the second inequality. By the explicit expression (B.1) for FΣ, we have

FΣ(u) =

∫

Σ
(4π)−

n
2 e−

|x+u(x)n(x)|2
4 νu(x),

where νu(x) is the relative volume element. By Lemma B.1, νu can be written as

νu(x) = ν(x, u(x),∇u(x)),

where ν is analytic in the u and ∇u entries for ‖u‖C0 sufficiently small, and is uniformly convex
in the ∇u entry for ‖u‖C1 sufficiently small. Therefore, FΣ satisfies Assumption 5.2. LetMΣ be
its Euler-Lagrange functional. Then Theorem 5.3 gives σ0, C > 0 and β ∈ (1

2 , 1) depending on n
and the form of FΣ (thus only on n as FΣ is otherwise fixed) such that for all u ∈ C2,α ∩Bσ0(0),

‖MΣ(u)‖L2 ≥ C|FΣ(u)−FΣ(0)|β. (5.27)

Write ρ(x) = (4π)−
n
2 e−

|x|2
4 , and let x and y be generic points on Σ and Σs respectively, related

bijectively by y = x+ u(x, s)n(x). By Lemma 3.24, we have

d

ds
FΣ(u(s)) = −

∫

Σs

(
HΣs −

〈
y,nΣs

〉

2

)2

ρ(y)

= −
∫

Σ

(
Hu(s) −

〈
x+ u(x, s)n(x),nu(s)

〉

2

)2

ρ(y)νu(s)(x),

(5.28)

where Hu(s)(x) = HΣs(y) and nu(s)(x) = nΣs(y). To simplify notation, let X be the expression

X =

∫

Σ

(
Hu(s) −

〈
x+ u(x, s)n(x),nu(s)

〉

2

)2

ρ(y)νu(s)(x).
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By the Cauchy–Schwarz inequality and Proposition B.2,

X ≥
∫

Σ

(
Hu(s) −

〈
x+ u(x, s)n(x),nu(s)

〉

2

)2

〈n,nu〉2 ρ(y)νu(s)(x)

=

∫

Σ
|MΣ(u(s))|2(ρ(y)νu(s)(x))−1.

(5.29)

Since νu = 1 when u = 0, and ν depends smoothly on u and ∇u, we can use the assumption that
‖u(s)‖C2,α ≤ σ0 to bound νu(s) from above by a constant depending on σ0. Using this in (5.29)
together with ρ(y)−1 ≥ (4π)

n
2 , we further estimate

X ≥ C
∫

Σ
|MΣ(u(s))|2 = C ‖MΣ(u(s))‖2L2 , (5.30)

where C = C(n, σ0) = C(n) > 0. At the same time, using the evolution equation for RMCF
(Lemma 3.21) followed by Corollary B.4, there exists C = C(n) such that

X =

∫

Σ

〈
∂u

∂s
n,nu(s)

〉2

ρ(y)νu(s)(x) ≥ C
∫

Σ

∣∣∣∣
∂u

∂s

∣∣∣∣
2

ρ(y)νu(s)(x).

Since Σ is compact and ‖u‖C2,α ≤ σ0, it follows that |y| = |x+ u(x)n(x)| is bounded and hence
ρ(y) ≥ C for some positive C = C(n, σ0) = C(n). Like above, we can bound νu(s) from below by
C = C(σ0) = C(n). Therefore

X ≥ C
∫

Σ

∣∣∣∣
∂u

∂s

∣∣∣∣
2

= C

∥∥∥∥
∂u

∂s

∥∥∥∥
2

L2

. (5.31)

Putting (5.30) and (5.31) back into (5.28), then using (5.27), we get

d

ds
FΣ(u(s)) = −X ≤ −C ‖MΣ(u(s))‖L2

∥∥∥∥
∂u

∂s

∥∥∥∥
L2

≤ −C|FΣ(u(s))−FΣ(0)|β
∥∥∥∥
∂u

∂s

∥∥∥∥
L2

.

We therefore have

− d

ds
(FΣ(u(s))−FΣ(0))1−β = −(1− β)(FΣ(u(s))−FΣ(0))−β

(
d

ds
FΣ(u(s))

)

≥ C(1− β)

∥∥∥∥
∂u

∂s

∥∥∥∥
L2

.

(5.32)

Setting θ = 1− β then integrating (5.32) yields the second inequality of (5.26).

Proof of Theorem 5.1. Let Σs be an RMCF associated to an MCF of compact, embedded hypersur-
faces in Rn+1. That is, Σs is obtained from an MCF by means of Definition 3.20, but we now refer
to the hypersurfaces themselves instead of the parametrising maps, seeing as they are embedded.
Suppose Σ arises as a tangent flow of Σs. We need to show that Σ is the unique tangent flow.

Let σ0 = σ0(n) be given by Lemma 5.7, and δ = δ(σ0) be given by Lemma 5.6. Further choose
0 < σ < σ0 so that whenever u ∈ C2,α(Σ) satisfies ‖u‖C2,α ≤ σ, we have
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(i) ‖u‖L2 ≤ δ
2 ;

(ii) C
θ |FΣ(u)−FΣ(0)|θ ≤ δ

2 , where C and θ are given by Lemma 5.7 depending on n.

The inequality (i) is possible since ‖u‖L2 ≤ C ‖u‖C2,α where C depends on the (finite) volume
of Σ. Meanwhile, (ii) is possible since FΣ(u) ≈ FΣ(0) if ‖u‖C1 is small (see §B.2).

Suppose Σs is an RMCF which has Σ as a tangent flow. Then there is a sequence of times si →∞
such that the sequence of RMCFs {Σs}s∈[si,si+1] converges smoothly to the RMCF of Σ, which
is stationary.2 This means we can find a time s∗ such that Σs is a normal graph over Σ for all
s ∈ [s∗, s∗ + 1], and the graph function u(·, s) satisfies ‖u(s)‖C2,α ≤ σ. So (i) and (ii) apply to
u(s) for s ∈ [s∗, s∗ + 1]. By (i) and Lemma 5.6, Σs is the graph of ũ(s) over Σ for s ∈ [s∗, s∗ + 2],
and ‖ũ(s)‖C2,α ≤ σ0. Lemma 5.7 now implies that for s ∈ [s∗ + 1, s∗ + 2],

‖ũ(s)‖L2 ≤ ‖ũ(s∗ + 1)‖L2 +
C

θ
(FΣ(ũ(s∗ + 1))−FΣ(0))θ ≤ δ

2
+
δ

2
= δ.

The hypotheses of Lemma 5.6 are now met by ũ(s) for s ∈ [s∗, s∗ + 2]. It follows that for
s ∈ [s∗, s∗ + 3], Σs is the normal graph over Σ of ũ with ‖ũ(s)‖C2,α ≤ σ0. Applying Lemma 5.7
again, we get that for s ∈ [s∗ + 2, s∗ + 3],

‖ũ(s)‖L2 ≤ ‖ũ(s∗ + 1)‖L2 +
C

θ
(FΣ(ũ(s∗ + 1))−FΣ(0))θ ≤ δ

2
+
δ

2
= δ.

Iterating indefinitely gives that Σs is the graph of ũ(s) over Σ for s ∈ [s∗,∞), and

‖ũ(s)‖C2,α ≤ σ0. (5.33)

Then whenever i and s are such that s ≥ si ≥ s∗, Lemma 5.7 gives

‖ũ(s)‖L2 ≤ ‖ũ(si)‖L2 +
C

θ
(FΣ(ũ(si))−FΣ(0))θ. (5.34)

As i → ∞, we have ũ(si) → 0 uniformly since Σsi → Σ smoothly by how si was chosen. Then
both terms on the right of (5.34) approach zero, giving

lim
s→∞

‖ũ(s)‖L2 = 0,

i.e. ũ(s) → 0 in L2. Since ũ is a graphical RMCF, it obeys a parabolic equation (Lemma B.3).
Parabolic bootstrapping turns the uniform C2,α bound (5.33) into Ck,α bounds for all k, say

‖ũ(s)‖Ck,α ≤ Ck

for all s ∈ [s∗,∞). However, L2 convergence and uniform boundedness in Ck,α implies Ck−1

convergence, so ũ(s)→ 0 in Ck for all k. We are done, because this shows that the hypersurfaces
Σs = graphΣ(ũ(s)) of the RMCF converge in C∞ to Σ along every sequence of times si →∞.

2This appeals to the perspective of tangent flows as rescaling limits of MCFs; see the end of §3.3.3.



Chapter 6

Uniqueness of Cylindrical Tangent
Flows

To prove uniqueness of tangent flows for all mean convex mean curvature flows (Theorem 3.31),
it remains to prove that all cylindrical blowups are unique:

Theorem 6.1 ([CM15]). If a unit multiplicity cylinder arises as a tangent flow of a compact,
embedded MCF, then it is the unique tangent flow at that point.

Like uniqueness of compact tangent flows, the proof is driven by Łojasiewicz-type inequalities.
However, the Łojasiewicz–Simon gradient inequality of Theorem 5.3 is unusable, in part because
the tangent flow in question is now noncompact, but also because the compact hypersurfaces of
the RMCF are never graphs over the whole cylinder. In this chapter, we will follow Colding and
Minicozzi’s paper [CM15] where new Łojasiewicz-type inequalities are developed, using entirely
novel techniques, leading to a successful proof of Theorem 6.1. Analogues of both inequalities
(5.1), (5.2) will be proved, with the former implying the latter.

We start with a synopsis to distill the key ideas of the proof. This summary is our own, and we
hope it illuminates an otherwise highly technical chapter. For the main matter, our treatment
retains the skeleton of the original paper, but our statements and proofs diverge from the original
at numerous points (most notably in §6.2 and §6.5, and to an extent §6.3). These are our
efforts to improve accuracy and intelligibility, and to correct any mistakes we could find. These
changes typically blend our own arguments with those from various other sources (e.g. [Man14],
[CM19b], [Zhu20]).

We tend to omit proofs that are already detailed enough in the paper and where there is little to
add, chiefly those in Section 3 of the paper. We simply state the results and move on. In exchange,
the proofs we elect to include are presented more meticulously than in the original.

6.0.1 Preliminaries for this chapter

In this chapter, all hypersurfaces are embedded, and we use the weighted Lp norms from §4.1.

Thus, for a hypersurface Σ ⊂ Rn+1, we have ‖u‖pLp(Σ) =
∫

Σ |u|pe−
|x|2

4 . Similarly we define

48
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‖u‖Lp(BR∩Σ) for R > 0. We write ‖u‖Lp and ‖u‖Lp(BR) if there is an obvious candidate for Σ.

Two important quantities on Σ are the tensor τ and the function φ : Σ→ R, defined by

τ =
A

H
, φ(x) = −H(x) +

〈x,n(x)〉
2

.

Note that ∇τ = 0 on a cylinder, and φ ≡ 0 if and only if Σ is a shrinker (Theorem 3.9). Next, we
define the entropy of Σ. For each x0 ∈ Rn+1 and τ > 0, let

Fx0,τ (Σ) = (4πτ)−
n
2

∫

Σ
e−
|x−x0|

2

4τ ,

so that F0,1 = F . The entropy of Σ is defined by

λ(Σ) = sup
x0∈Rn+1,τ>0

Fx0,τ (Σ). (6.1)

Arguing similarly as (4.1), polynomial volume growth implies finite entropy λ(Σ) ≤ λ0 <∞. If
Σ is a shrinker, then the converse holds: bounded entropy implies Hn(BR(x0) ∩ Σ) ≤ C(λ0)Rn

for all x0 ∈ Rn+1 [CZ13]. Bounded entropy also yields a cutoff lemma:

Lemma 6.2 ([CM19b]). If Σ ⊂ Rn+1 is a hypersurface with λ(Σ) ≤ λ0 < ∞, then for any
Euclidean ball BR(x0) ⊂ Rn+1 we have

∫

Σ\BR(x0)
|x− x0|me−

|x−x0|
2

4 ≤ Cλ0R
ρe−

R2

4 <∞,

where C = C(m,n, λ0) and ρ = ρ(m,n).

In an earlier paper, uniqueness of type for cylindrical tangent flows was proved:

Theorem 6.3 ([CIM15]). If a unit multiplicity cylinder arises as a tangent flow of the RMCF at a
point of a compact, embedded MCF, then all tangent flows are rotations of this cylinder.

Theorem 6.1 strengthens this by ruling out the rotational freedom. The proof uses Theorem 6.3
directly. We will not prove Theorem 6.3; although this may seem an excessive leap, many proofs
in this chapter are borne out of ideas from [CIM15], so readers will find that paper accessible
after reading this chapter or the paper [CM15] which this chapter is based on.

6.1 Synopsis

Let us now outline how Theorem 6.1 will be proved. Figure 6.1 illustrates the pipeline of main
ingredients in the proof, which we will run through shortly.

6.1.1 The cylindrical scale

Let Ck be the set of all rotations of Sk√
2k
×Rn−k about the origin in Rn+1, where k ∈ {1, . . . , n−1}.

If a tangent flow is cylindrical, then it belongs to Ck for some k (Theorem 4.1), and in fact all
tangent flows belong to Ck (Theorem 6.3). The Łojasiewicz inequalities used to prove Theorem
6.1 are therefore designed for hypersurfaces already ‘close’ to Ck. To quantify this closeness, we
will use a cylindrical scale defined for an embedded hypersurface Σ ⊂ Rn+1 as follows.
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Łojasiewicz I
(Theorem 6.7)

Improvement step
(Theorem 6.27/6.37)

Gradient Łojasiewicz
(Theorem 6.8)

Extension step
(Theorem 6.28/6.36)

Scale comparison
(Theorem 6.26)

Uniform C2,α-closeness
(Lemma 6.41)

Discrete inequality
(Theorem 6.39)

Graphical bounds
(Proposition 6.10)

‖∇τ‖C1 bound
(Proposition 6.17)

Uniqueness
(Theorem 6.1)

Choose
ε small and
β, `,K large

Figure 6.1: Main theorems in the proof of Theorem 6.1 and their relationships.

Definition 6.4. Given ε,R > 0, we say that Σ is (ε,R,C2,α)-close to another hypersurface Γ if
BR ∩ Σ is the normal graph of some u ∈ C2,α(Γ) over Γ with ‖u‖C2,α ≤ ε.

Definition 6.5. Given ε > 0, ` ∈ N and K > 0, the cylindrical scale rε,`,K(Σ) is the maximum R

such that

• Σ is (ε,R,C2,α)-close to a cylinder in Ck for some k, and |∇`A| ≤ K on BR ∩ Σ.

As rε,`,K(Σ) depends on ε, ` and K, this really defines a family of cylindrical scales. For a fixed
K, taking ε small and ` large makes BR ∩ Σ increasingly cylinder-like whenever R ≤ rε,`,K(Σ).
We think of BR ∩ Σ as being close to Ck (this qualification of course depends on ε, ` and K).

Lemma 6.6. Let R ≤ rε,`,K(Σ). On BR ∩ Σ, there is a lower bound for H depending on ε, and for
each j ≤ ` there are upper bounds for |∇jA|, |∇jH|, |∇jτ |, |∇jφ| depending on ε, j,K.

Proof. Suppose BR ∩ Σ is the graph of u over Γ ∈ Ck with ‖u‖C2,α ≤ ε. Since Γ has constant
|A|2 = 1

2 and H =
√
k/2, and the A and H of BR ∩ Σ depend on second derivatives of u, we

get control over |A| and a lower bound for H using ε. The bounds on |A| and |∇`A| interpolate
to bounds on |∇jA| for all j ≤ `, and therefore bounds on |∇jH|. Since ∇jτ is an expression in
A, H and their covariant derivatives with only H appearing the denominator, it is also bounded.
Finally, φ depends on up to second derivatives of u by Lemma B.1 (specifically φ = 1

2ηu − Hu

over there). But the |∇jA| bounds control the (j + 2)-th derivatives of u, so we can use this to
control |∇jφ| for all j ≤ `.
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6.1.2 Łojasiewicz inequalities for cylinder-like hypersurfaces

Let Σ ⊂ Rn+1 be a hypersurface and Γ ∈ Ck. For x ∈ Σ, let wΓ(x) be the distance from x to the
axis of Γ. Using this, we define a weighted L2 distance from Σ to Ck within BR by

dCk(BR ∩ Σ)2 = inf
Γ∈Ck

∥∥∥wΓ −
√

2k
∥∥∥

2

L2(BR∩Σ)
= inf

Γ∈Ck

∫

BR∩Σ
(wΓ −

√
2k)2e−

|x|2
4 .

The first Łojasiewicz inequality bounds this distance as long as BR∩Σ is sufficiently cylinder-like.
This translates to the requirement that R ≤ rε,`,K(Σ) where ε is small and ` is large. We also
need a lower bound R ≥ R0 to make sure everything happens on a nontrivial scale to begin with.

Theorem 6.7 (Łojasiewicz I, 0.241). Given n, there exist ε0 and `0 with the following property. For
all λ0 > 0, ε ≤ ε0, ` ≥ `0 and K > 0, there exists R0 = R0(n, λ0, ε, `,K) so that if Σ ⊂ Rn+1 is a
hypersurface with λ(Σ) ≤ λ0 and R ∈ [R0, rε,`,K(Σ)], then

dCk(BR ∩ Σ)2 ≤ CRρ
{
‖φ‖d`,n

L1(BR)
+ e−

d`,nR
2

4

}
,

where C = C(n, λ0, ε, `,K), ρ = ρ(n) and d`,n ∈ (0, 1)↗ 1 as `→∞.

Since every Γ ∈ Ck is a shrinker and therefore has φ ≡ 0, this bounds the distance from BR ∩ Σ

to the zero set of φ using φ itself, in similar spirit to (5.1). Meanwhile, there is an error term
coming from a cutoff as Σ is not an entire graph over the cylinder. The proof is detailed in §6.2
and §6.3, and uses two delicate results: a graphical proposition and a bound for ‖∇τ‖C1 .

Colding and Minicozzi’s original statement does not impose a variable lower bound R ≥ R0, but
we believe it is needed for technical reasons in the proof. Anyway, the lower bound is on the
whole harmless, as we are only interested in using the theorem when R ≈ rε,`,K(Σ)� R0. Still,
it has a spillover effect on the theorems that follow.

In §6.4, we will use Theorem 6.7 to prove a gradient inequality which generalises (5.2). Note
that all cylinders in Ck have the same F value by symmetry, so we can make sense of F(Ck). We
again highlight the presence of noncompact error terms.

Theorem 6.8 (Gradient Łojasiewicz, 0.26). Given n, there exist ε0 and `0 with the following
property. For all λ0 > 0, ε ≤ ε0, ` ≥ `0 and K > 0, there exists R0 = R0(n, λ0, ε, `,K) so that if
Σ ⊂ Rn+1 is a hypersurface with λ(Σ) ≤ λ0, R ∈ [R0, rε,`,K(Σ)], and β ∈ [0, 1), then

|F(Σ)−F(Ck)| ≤ CRρ
{
‖φ‖d`,n

3+β
2+2β

L2(BR)
+ e
−
d`,n(3+β)R2

8(1+β) + e−
(3+β)(R−1)2

16

}
,

where C = C(n, λ0, ε, `,K), ρ = ρ(n) and d`,n ∈ (0, 1)↗ 1 as `→∞.

While these theorems look complicated, we emphasise that most of their conditions simply
express the requirement that BR ∩Σ is cylinder-like. It is for this reason that we refer to them as
Łojasiewicz inequalities for cylinder-like hypersurfaces.

1In this chapter, numbers in parentheses after theorem/lemma numbers indicate the closest (but often not exact)
match in the numbering of the original paper [CM15].
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6.1.3 From Łojasiewicz inequalities to uniqueness

The gradient inequality of Theorem 6.8 will be applied to the timeslices ΣT of a given RMCF,
then used to prove uniqueness of cylindrical tangent flows. The key milestone will be to bound
each term on the right by a power greater than 1

2 of F(ΣT−1)−F(ΣT+1), so that

|F(ΣT )−F(Ck)| ≤ C(F(ΣT−1)−F(ΣT+1))
1+µ

2 (6.2)

for some µ > 0. This is Theorem 6.39, and we call (6.2) the discrete differential inequality.

To turn the gradient inequality into (6.2), note that the former currently has six degrees of
freedom: n, λ0, ε, `,K and β. As we are dealing with a given RMCF, n and λ0 are enforced upon
us, leaving four free variables at our disposal. The plan is to apply the gradient inequality with a
judicious choice of these parameters so that (6.2) follows; there are two parts to this.

(1) We will choose β close to one and ` large to make the exponent on ‖φ‖L2 in the gradient
inequality greater than one. A mean value inequality will bound ‖φ‖2L2 by a constant times
F(ΣT−1)−F(ΣT+1).

(2) We will choose K large to bound both error terms by a power greater than 1
2 of F(ΣT−1)−

F(ΣT+1). This will require a C2,α-closeness criterion to be met (Theorem 6.26).

Since ε plays no part here, we can fix it to be the ε0 = ε0(n) of Theorem 6.8. To sketch how

(2) works, observe that (1) makes the error terms essentially e−
R2

4 . To bound these, we ask if
there exists R within the applicable range of the gradient inequality (i.e. R ∈ [R0, rε0,`,K(ΣT )])
satisfying

e−
R2

4 ≤ (F(ΣT−1)−F(ΣT+1))
1+µ

2

for some µ > 0. Phrasing this question differently, we define a shrinker scale R(ΣT ) by

e−
R(ΣT )2

4 = (F(ΣT−1)−F(ΣT+1))
1
2 ,

and ask whether there exists µ > 0 such that

rε0,`,K(ΣT ) ≥ (1 + µ)R(ΣT ).

In Theorem 6.26, we will show that this inequality holds when the RMCF Σs meets a uniform
C2,α-closeness criterion and K is large. The C2,α-closeness criterion reads:

(#T ) For each s ∈ [T − 1
2 , T + 1], Σs is (εE , R1, C

2,α)-close to a cylinder,

where εE and R1 are stipulated by the theorem. Theorem 6.26 is proved by repeated iteration
of two theorems, called the extension and improvement steps. The improvement step is a con-
sequence of the first Łojasiewicz inequality, while the extension step is derived from standard
regularity results for MCF. This procedure is developed in §6.5.

Thus, (#T ) is the condition required to bound the error terms as per (2). Theorem 6.39 puts
everything together, giving that if (#T ) holds, then the discrete differential inequality (6.2) can
be obtained from the gradient inequality by choosing β, ` and K according to (1) and (2).2

2We also need to choose β and ` slightly larger to absorb the Rρ term in the gradient inequality.
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The point is that if Σs is an RMCF with a cylindrical tangent flow, then (#s) holds for all large s
(Lemma 6.41). From the last paragraph, this means (6.2) holds on Σs for all large s. We will use
this to show that ∫ ∞

1
‖φ‖L1(Σs)

ds <∞.

Since φ is the speed of the RMCF by Lemma 3.21, this shows that the flow has finite length, so
Σs has a unique limit (Lemma B.5 makes this precise). Theorem 6.1 follows. Observe that this
last part is basically what was outlined in §5.1.

Remark 6.9. In practice, steps (1) and (2) above are reversed. Namely, Theorem 6.26 will show
that there exists such a K for each `, and then β and ` are chosen large afterwards. This is
because we actually have to choose β and ` depending on a constant coming out of Theorem

6.26 as the error terms are not exactly e−
R2

4 . The mean value inequality mentioned in (1) is also
packaged into Theorem 6.26, purely for convenience. We ignored these matters in the synopsis
to simplify discussion, but the essence of the strategy remains unchanged.

6.2 A graphical proposition

Over the next two sections, we will prove the first Łojasiewicz inequality, Theorem 6.7. This
hinges on the next proposition, which says that if a hypersurface Σ is almost cylindrical on a
small scale and ‖φ‖C1 , ‖∇τ‖C1 almost vanish on a large scale, then Σ is almost cylindrical on
the large scale. The proposition supplies pointwise graphical bounds to be used later.

Proposition 6.10 (2.1). Given n and K1, there exist ε0 = ε0(n) and ε1 = ε1(n,K1) so that if
Σ ⊂ Rn+1 is a hypersurface with

(1) H ≥ 1
2 and |A|+ |∇A| ≤ K1 on BR ∩ Σ;

(2) Σ is (ε0, 5
√

2n,C2)-close to a cylinder in Ck for some k ≥ 1;

then whenever r ∈ (5
√

2n,R) has

(3) r ‖φ‖C1(B5
√

2n) + r5 ‖∇τ‖C1(Br)
≤ ε1;

(4) Bρ ∩ Σ is connected for all ρ ∈ (5
√

2n, r);

we have that Br ∩ Σ is the graph over a (possibly different) cylinder in Ck of u with the bound

|u(x)|+ |∇u(x)| ≤ C
(
r ‖φ‖C1(B5

√
2n) + r5 ‖∇τ‖C1(B|x|)

)
,

where C = C(n,K1).

Remark 6.11. The statement in the original paper does not have condition (4), but it seems
necessary (see Step 5 of the proof in §6.2.2). Anyway, when the proposition is applied we will
already assume BR ∩ Σ is graphical over a cylinder, and this geometrically implies (4).

6.2.1 Ingredients for the proof of Proposition 6.10

The proof of Proposition 6.10 uses three lemmas. We omit proofs of the first two, instead focusing
on the third where our version differs from [CM15]. The first lemma is from [CIM15]:
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Lemma 6.12 ([CIM15, Corollary 4.22]). Let Σ ⊂ Rn+1 be a hypersurface with H ≥ 1
2 and

|∇τ |+ |∇2τ | ≤ ε < 1. Suppose τ has at least two distinct eigenvalues κ1 6= κ2 at x ∈ Σ. Then

|κ1κ2| ≤ 8ε

(
1

|κ1 − κ2|
+

1

|κ1 − κ2|2
)
.

The second lemma we need is a spherical variant of Theorem 6.7.

Lemma 6.13 (2.5). Given k and α > 0, there exist ε0 and C so that if Σ0 ⊂ Rk+1 is the graph over
Sk√

2k
of a function u satisfying ‖u‖C2,α ≤ ε0, then

‖u‖C2,α(Sk√
2k

) ≤ C ‖φ‖C0,α(Σ0) .

The third lemma says that if Σ is almost a shrinker and is almost translation invariant in n− k
directions, then slicing Σ orthogonally to these directions gives a k-dimensional almost-shrinker.
We will use this to slice an almost-cylinder down to an almost-sphere.

Lemma 6.14 (2.11). Let (x1, . . . , xn+1) denote coordinates in Rn+1. Let Σ ⊂ Rn+1 be a hypersur-
face, Π = {xk+2 = xk+3 = . . . = xn+1 = 0}, and Σ0 = Σ ∩ Π. For i ∈ {k + 2, k + 3, . . . , n + 1},
define vi = ∇xi, the tangential projection of ∂i onto Σ. If x ∈ Σ0 is a point where Σ intersects Π

transversely, and for all i we have

|vi(x)| ≥ 1− ε, |∇vi(x)| ≤ ε, |Ax(·, vi)|+ |(∇A)x(·, vi)| ≤ ε, (6.3)

then | 〈vi(x), vj(x)〉 − δij | ≤ 2ε (in fact this requires only the inequality on the left). Additionally,
there exists ε1 = ε1(n) such that if ε ≤ ε1, then

|φ0(x)− φ(x)|+ |∇Σ0(φ0(x)− φ(x))| ≤ Cε(1 + |φ(x)|+ |∇φ(x)|),

where C = C(n), and φ0 is the φ of Σ0.

Remark 6.15. In the original paper, this is stated for k = n − 1 without tight constraints on ε,
and is iterated n − k times when applied. However, this overlooks the subtlety that ε must be
small to allow repeated application of the lemma. We found it easier to instead generalise the
lemma to arbitrary k, giving the statement above. Our proof generalises the k = n− 1 case, but
original arguments were needed to overcome high-dimensional complications.

Proof of Lemma 6.14. All computations in this proof are done at the point x, which will be sup-
pressed in notation. Since vi = ∂i − 〈∂i,n〉n where n is the unit normal to Σ at x, we have

〈vi, vj〉 = 〈∂i − 〈∂i,n〉n, ∂j − 〈∂j ,n〉n〉 = δij − 〈∂i,n〉 〈∂j ,n〉 . (6.4)

Since |vi|2 = 1− 〈∂i,n〉2 and |vi| ≥ 1− ε, we have

〈∂i,n〉 ≤
√

2ε. (6.5)

Combining this with (6.4) gives
| 〈vi, vj〉 − δij | ≤ 2ε, (6.6)
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which is the first claim. Next, apply Gram-Schmidt to the vectors {vk+2, . . . , vn+1} to get an
orthonormal set

{
wk+2

|wk+2| , . . . ,
wn+1

|wn+1|

}
, where each wi is the formal determinant

wi =
1

|vk+2|2 . . . |vi−1|2

∣∣∣∣∣∣∣∣∣∣

〈vk+2, vk+2〉 〈vk+2, vk+3〉 · · · 〈vk+2, vi−1〉 vk+2

〈vk+3, vk+2〉 〈vk+3, vk+3〉 · · · 〈vk+3, vi−1〉 vk+3
...

...
. . .

...
...

〈vi, vk+2〉 〈vi, vk+3〉 · · · 〈vi, vi−1〉 vi

∣∣∣∣∣∣∣∣∣∣

. (6.7)

First assume that ε < 1
2 . We may use (6.6) and (6.7) to get a constant N = N(n) such that

1
2 < 1−Nε ≤ |wi| ≤ 1 for each i ∈ {k + 2, . . . , n+ 1}. Namely,

• Expanding (6.7) and using the reverse triangle inequality together with 1
2 < 1−ε ≤ |vi| ≤ 1,

we get |wi| ≥ 1− ε+O(ε), where the coefficients in O(ε) depend only on n. Thus, we can
shrink ε to get |wi| ≥ 1−Nε for some N = N(n). The bound |wi| ≤ 1 follows trivially from
the Gram-Schmidt algorithm. We may shrink ε further (depending on n) so that Nε < 1

2 .

We can also arrange that |∇wi| ≤ Nε (for a possibly different N); the idea is to apply ∇ to (6.7)
and use |∇vi| ≤ ε, the Cauchy–Schwarz inequality and 1

2 < |vi| < 1. Likewise we can bound
|A(·, wi)|+ |(∇A)(·, wi)| ≤ Nε using (6.3), the bilinearity of A and ∇A, and the aforementioned
facts. If N was enlarged at any point, tighten ε again to ensure Nε < 1

2 . To summarise, choosing
ε small enough ensures that for all i ∈ {k + 2, . . . , n+ 1},

1 > |wi| ≥ 1−Nε > 1

2
, |∇wi| ≤ Nε <

1

2
, |A(·, wi)|+ |(∇A)(·, wi)| ≤ Nε <

1

2
. (6.8)

If e1, . . . , ek is an orthonormal frame for Σ0 in a neighbourhood of x, then

e1, . . . , ek,
wk+2

|wk+2|
,
wk+3

|wk+3|
, . . . ,

wn+1

|wn+1|
is an orthonormal frame for Σ. Furthermore, if n0 ∈ Rk+1 ⊂ Rn+1 is the normal to Σ0 at x, then

n0 =
n−∑n+1

i=k+2 〈∂i,n〉 ∂i
α

, α =

∣∣∣∣∣n−
n+1∑

i=k+2

〈∂i,n〉 ∂i
∣∣∣∣∣ =

(
1−

n+1∑

i=k+2

〈∂i,n〉2
)1/2

. (6.9)

Transversity ensures that α 6= 0. Since ∇eiej ∈ Rk+1, we have
〈
∇eiej , ∂`

〉
= 0 for ` ∈ {k +

2, . . . , n+ 1}. Thus, (6.9) gives
〈
∇eiej ,n0

〉
= 1

α

〈
∇eiej ,n

〉
. It follows that

H −H0 = −




k∑

i=1

A(ei, ei) +
n+1∑

j=k+2

A

(
wj
|wj |

,
wj
|wj |

)
+

k∑

i=1

〈
∇eiei,n0

〉

=
1− α
α

k∑

i=1

A(ei, ei)−
n+1∑

j=k+2

A

(
wj
|wj |

,
wj
|wj |

)

=
α− 1

α
H − 1

α

n+1∑

j=k+2

A

(
wj
|wj |

,
wj
|wj |

)
.

(6.10)

As x ∈ Σ0, we have xk+2 = . . . = xn+1 = 0, so 〈x0,n0〉 = 〈x,n0〉 and 〈x, ∂i〉 = 0 for i ∈
{k + 2, . . . , n+ 1}. Using this in (6.9), we get

〈x,n〉 − 〈x0,n0〉 = 〈x,n〉 − 1

α

〈
x,n−

n+1∑

i=k+2

〈∂i,n〉 ∂i
〉

=
α− 1

α
〈x,n〉 . (6.11)
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Combining (6.10) and (6.11) gives

φ− φ0 =
1

2
(〈x,n〉 − 〈x0,n0〉)− (H −H0)

=
α− 1

α

(
1

2
〈x,n〉 −H

)
+

1

α

n+1∑

j=k+2

A

(
wj
|wj |

,
wj
|wj |

)

=
α− 1

α
φ+

1

α

n+1∑

j=k+2

A

(
wj
|wj |

,
wj
|wj |

)
.

(6.12)

To bound this, we may assume ε ≤ 1
4n , so that by (6.9), (6.5) and 0 < α < 1, we have

α > α2 = 1−
n+1∑

i=k+2

〈∂i,n〉2 ≥ 1− 2ε(n− k) ≥ 1

2
,

1− α < 1− α2 =

n+1∑

i=k+2

〈∂i,n〉2 ≤ 2ε(n− k) ≤ 2nε,

|∇α| < 2|α||∇α| = |∇α2| ≤
n+1∑

i=k+2

|∇ 〈∂i,n〉2 | =
n+1∑

i=k+2

|∇|vi|2| ≤ 2

n+1∑

i=k+2

|∇|vi|| ≤ 2

n+1∑

i=k+2

|∇vi| ≤ 2nε.

The last line uses |vi|2 = 1− 〈∂i,n〉2 and the Kato inequality. Using these in (6.12) and keeping
(6.8) in mind, it follows that

|φ− φ0| ≤ 4nε|φ|+ 2

|wj |
n+1∑

j=k+2

∣∣∣∣A
(
wj
|wj |

, wj

)∣∣∣∣ ≤ 4nε|φ|+ 4nNε. (6.13)

Similarly, differentiating (6.12) gives

|∇(φ− φ0)| ≤
∣∣∣∣
α− 1

α

∣∣∣∣ |∇φ|+
|∇α|
|α| |φ|+

∣∣∣∣
α− 1

α2

∣∣∣∣ |∇α||φ|+
|∇α|
α2

n+1∑

j=k+2

|A(wj , wj)|
|wj |2

+
1

|α|
n+1∑

j=k+2

( |(∇A)(wj , wj)|
|wj |2

+ 2

∣∣∣∣A
(
∇ wj
|wj |

,
wj
|wj |

)∣∣∣∣
)

≤ 4nε|∇φ|+ 4nε|φ|+ 16n2ε2|φ|+ 16n2Nε2 + 4nNε+ 16nNε.

(6.14)

Adding (6.13) and (6.14) gives the second claim of the lemma, since ε2 < ε and N = N(n).

6.2.2 Proof of Proposition 6.10

Our proof is structured like the original proof in [CM15], and is in five steps. Steps 1 and 2 follow
the original. In Step 3, we borrowed arguments from [Man14] and made sure to use our version
of Lemma 6.14. Step 4 is different, and our version resolves what seems to be an error in the
original proof (discussed in Remark 6.16). The constructions in Step 4 are similar to, but not the
same as, those in [CM19b]. The original proof has no Step 5, but it seems necessary to complete
the proof; we adapted ideas from [CIM15] in our explanation.
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Proof of Proposition 6.10. All constants C will have dependence at most C(n,K1). We include
illustrations for the case n = 2, k = 1.

Step 1: Fixing the model cylinder. By the (ε0, 5
√

2n,C2)-closeness to a cylinder in Ck, at any
point p ∈ B2

√
2n ∩ Σ there are n− k orthonormal eigenvectors

vk+2(p), vk+3(p), . . . , vn+1(p)

of A with eigenvalues κk+2(p), . . . , κn+1(p) of absolute value less than 1√
100n

, and k other eigen-

values greater than 1√
4n

. This assumes that ε0 is chosen small depending on n. Since H ≥ 1
2 on

B2
√

2n ∩ Σ and ‖∇τ‖C1(B2
√

2n) < 1 (taking ε1 < 1 say), Lemma 6.12 and A = Hτ give that

|κi(p)| ≤ C ‖∇τ‖C1(B5
√

2n) , k + 2 ≤ i ≤ n+ 1. (6.15)

Intuitively, the vectors {vi(p)}n+1
i=k+2 are the flat directions at p of the almost-cylinder B5

√
2n ∩ Σ.

We will write Σ as a graph over (part of) the cylinder Sk√
2k
× Rn−k, rotated to align the Rn−k

directions with the flat directions. Without loss of generality, assume the flat directions coincide
with the coordinate directions xk+2, . . . , xn+1, so no rotation is required (see Figure 6.2). Extend
the vi(p) to n− k tangential vector fields vi on Σ defined by

vi(x) = ∇xi = vi(p)− 〈vi(p),n(x)〉n(x). (6.16)

b p

v3(p)

S1√
2
× R2

Σ

Figure 6.2: Using the vertical directions to Σ at p to determine the model cylinder.

Step 2: Bounds near p. For any ρ ∈ [5
√

2n, r), let Ωρ be the set of points in Bρ ∩ Σ which can
be reached from p by a path in Bρ ∩ Σ of length at most 3ρ. We will show that for all x ∈ Ωρ,

|vi(x)− vi(p)| ≤ Cρ2 ‖∇τ‖C1(Bρ) , (6.17)

|τx(vi)| ≤ Cρ2 ‖∇τ‖C1(Bρ) , (6.18)

|∇vi(x)A| ≤ Cρ2 ‖∇τ‖C1(Bρ) . (6.19)

Since ρ2 ‖∇τ‖C1(Bρ) ≤ ε1 is small, these bounds convey that Ωρ is almost cylindrical.
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Let γ : [0, 3ρ]→ Bρ ∩ Σ be a curve with γ(0) = p and |γ′| ≤ 1, and let w be a parallel unit vector
field along γ with w(0) = vi(p). Then at any point γ(s),

|∇γ′(s)τ(w)| ≤ C|∇τ ||γ′||w| ≤ C ‖∇τ‖C1(Bρ) .

where C = C(n) arises from the equivalence of norms (as we have conflated operator and tensor
norms). Thus, integrating along γ gives

|τ(w(s))| ≤ |τp(vi(p))|+ 3ρC ‖∇τ‖C1(Bρ) ≤ Cρ ‖∇τ‖C1(Bρ) , (6.20)

where the last inequality uses (6.15). Since |H| ≤ √n|A| ≤ K1
√
n, we then have

|A(w(s))| = |H||τ(w(s))| ≤ Cρ ‖∇τ‖C1(Bρ) .

Using this and ∇γ′w = A(γ′, w)n, it holds for any t ∈ [0, 3ρ] that

|w(t)− vi(p)| = |w(t)− w(0)| ≤
∫ 3ρ

0
|A(w(s))| ds ≤ Cρ2 ‖∇τ‖C1(Bρ) .

Since w(t) ∈ Tγ(t)Σ, and vi(γ(t)) is the orthogonal projection of vi(p) onto Tγ(t)Σ, we have

|vi(γ(t))− vi(p)| ≤ |w(t)− vi(p)| ≤ Cρ2 ‖∇τ‖C1(Bρ) ,

giving (6.17). Likewise,

|w(t)− vi(γ(t))| ≤ |w(t)− vi(p)| ≤ Cρ2 ‖∇τ‖C1(Bρ) ,

so by (6.20) and the bound |τ | = C(n)|A|/H ≤ C(n,K1) from (1) in the hypotheses, we get

|τγ(t)(vi)| ≤ |τ(w(t))|+ |τ(w(t)− vi(γ(t)))| ≤ Cρ2 ‖∇τ‖C1(Bρ) ,

which is (6.18). Finally, the Codazzi equations give that for any unit vector fields X and Y ,

|(∇viA)(X,Y )| = |(∇xA)(vi, Y )| = |(∇X(Hτ))(vi, y)|
= |H(∇Xτ)(vi, Y )|+ |(∇XH) · τ(vi, Y )|
≤ C ‖∇τ‖C1(Bρ) + Cρ2 ‖∇τ‖C1(Bρ) ,

where the last inequality used (6.18) as well as the upper bounds on |H| and |∇H| induced by
the inequality |A|+ |∇A| ≤ K1. This proves (6.19).

Step 3: Graphical bounds on a cross-section. By (ε0, 5
√

2n,C2)-closeness, the horizontal slice

Σ0 = B5
√

2n ∩ Σ ∩ {xk+2 = . . . = xn+1 = 0}

is almost Sk√
2k
⊂ Rk+1. We will apply Lemma 6.14 to bound φ0 (the φ of Σ0), then use Lemma

6.13 to get bounds when writing Σ0 as the graph of a function u0 over Sk√
2k

(see Figure 6.3).

First, we check that Σ0 meets conditions (6.3) of Lemma 6.14. The estimates of Step 2 apply
with ρ = 5

√
2n since Σ0 ⊂ B5

√
2n ∩ Σ ⊂ Ω5

√
2n by the C2-closeness. For each x ∈ Σ0 and

i ∈ {k + 2, . . . , n+ 1},
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{x3 = 0}

Σ0 S1√
2

Σ

S1√
2
× R2

u0

Figure 6.3: Slicing horizontally to get bounds on u0.

(i) Using (6.17) and that vi(p) has unit length, we have

|vi(x)| ≥ |vi(p)| − |vi(x)− vi(p)| ≥ 1− C ‖∇τ‖C1(B5
√

2n) ,

where the (5
√

2n)2 factor from (6.17) was absorbed into C.

(ii) Where ∇ is the Euclidean derivative, (6.16) gives that for any vector field X on Σ,

∇Xvi(x) = −
〈
vi(p),∇Xn(x)

〉
n(x)− 〈vi(p),n(x)〉∇Xn(x).

Projecting onto the tangent space of Σ and taking norms, we get

|∇Xvi(x)| = |(〈vi(x)− vi(p),n(x)〉 − 〈vi(x),n(x)〉)Ax(X, ·)|
≤ C(5

√
2n)2 ‖∇τ‖C1(Bρ) |X| ≤ C ‖∇τ‖C1(B5

√
2n) |X|,

where the first inequality uses (6.17) and the bound on |A|. Hence, |∇vi(x)| ≤ C ‖∇τ‖C1(B5
√

2n).

(iii) By (6.18), (6.19) and the upper bound on H,

|Ax(·, vi)|+ |(∇A)x(·, vi)| = |H||τx(·, vi)|+ |∇vi(x)A| ≤ C ‖∇τ‖C1(B5
√

2n) .

Taking ε1 small depending on n and K1, Lemma 6.14 applies with ε = C ‖∇τ‖C1(B5
√

2n) to give

‖φ0‖C1(Σ0) ≤ C ‖∇τ‖C1(B5
√

2n) (1 + ‖φ‖C1(B5
√

2n)) + ‖φ‖C1(B5
√

2n)

≤ C(‖∇τ‖C1(B5
√

2n) + ‖φ‖C1(B5
√

2n)).

Shrinking ε0 further, Lemma 6.13 gives that Σ0 is the graph over Sk√
2k

of a function u0 with

‖u0‖C2,α ≤ C(‖∇τ‖C1(B5
√

2n) + ‖φ‖C1(B5
√

2n)). (6.21)
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Step 4: Extending graphical bounds vertically within Ωρ. Let w : Σ → R be the distance to
the axis of the model cylinder Sk√

2k
× Rn−k, so that

w(x) =



k+1∑

j=1

x2
j




1/2

,

and w(x) =
√

2k if and only if x ∈ Sk√
2k
× Rn−k. If w0 is w restricted to Σ0, then (6.21) reads

∥∥∥w0 −
√

2k
∥∥∥
C2,α(Σ0)

≤ C(‖∇τ‖C1(B5
√

2n) + ‖φ‖C1(B5
√

2n)). (6.22)

We will extend these graphical bounds vertically by subjecting Σ0 to a family of flows. To construct
these flows, define (n − k)2 functions Ji` = 〈vi, v`〉, where i, ` ∈ {k + 2, . . . , n + 1}. Within Ωρ,
we have from (6.17) that

|vi(x)| ≥ |vi(p)| − |vi(x)− vi(p)| ≥ 1− Cρ2 ‖∇τ‖C1(Bρ) ≥ 1− Cε1,

so by taking ε1 small, Lemma 6.14 gives |Ji` − δi`| ≤ 2Cε1. Then (Ji`) is close to the identity
matrix, and has an inverse (J i`) that is also close to the identity on Ωρ, say |J i` − δi`| ≤ C. For
each ξ = (ξk+2, . . . , ξn+1) ∈ Rn−k with |ξ| = 1, define a vector field Xξ on Σ by

Xξ =
n+1∑

i,`=k+2

J i`ξ`vi.

If γ is an integral curve of Xξ, then for each β ∈ {k + 2, . . . , n+ 1},

d

dt
xβ(γ(t)) =

〈
∇xβ(γ(t)), Xξ(γ(t))

〉
=
〈
vβ, J

i`ξ`vi

〉
= J i`J`βξ` = ξβ.

Thus, flowing by Xξ changes the ‘height’ h(x) = (xk+2, . . . , xn+1) at constant rate ξ. If we start
the flow from Σ0 (where we have h = 0), then at time t we get a connected component of
Σ ∩ {h = tξ} which is a topological Sk (see Figure 6.4).

Let i ∈ {k + 2, . . . , n+ 1} and j ∈ {1, . . . , k + 1}. Since ∇xj = ∇xj +
〈
∇xj ,n

〉
n and ∇2

xj = 0,
it holds on Ωρ that

|∇vi∇xj | = |∇vi(
〈
∇xj ,n

〉
n)| ≤ 2|∇vin| = 2|A(vi, ·)| ≤ 2|H||τ(vi)| ≤ Cρ2 ‖∇τ‖C1(Bρ) , (6.23)

where the first inequality uses the Leibniz rule and Cauchy–Schwarz, and the last inequality uses
(6.18) and |H| ≤ √n|A| ≤ K1

√
n. Then since Xξ = J i`ξ`vi,

sup
Ωρ

|∇Xξ∇xj | ≤ sup
Ωρ

|J i`||ξ`||∇vi∇xj | ≤ Cρ2 ‖∇τ‖C1(Bρ) , (6.24)

where the last inequality uses (6.23) and that |J i`| ≤ δi` + C ≤ C and |ξ`| ≤ 1. By (6.17), we
have that on Ωρ,

|∇vixj | ≤ |∇vi(p)xj |+ |∇vi(p)−vi(x)xj | ≤ |∇vi(p)xj |+Cρ2 ‖∇τ‖C1(Bρ) |∇xj | ≤ Cρ2 ‖∇τ‖C1(Bρ) ,
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Σ0

Flow Σ0 out
by Xξ, ξ = 1

Timeslices
of flow

u(x)

Figure 6.4: Flowing Σ0 by Xξ to extend the bounds on u0 to bounds on u within Ωρ.
Each timeslice of the flow is (part of) a level set of the ‘height’ function h.

where we used that
〈
∇xj , vi(p)

〉
= 0 and |∇xj | ≤ |∇xj | = 1. Reasoning as in (6.24), this gives

supΩρ |∇Xξxj | ≤ Cρ2 ‖∇τ‖C1(Bρ). Finally, combining this and (6.24) gives

sup
Ωρ

|∇Xξ∇w2| = 2 sup
Ωρ

|∇Xξ(xj∇xj)| ≤ Cρ2 ‖∇τ‖C1(Bρ) sup
Ωρ

(|∇xj |+ |xj |) ≤ Cρ3 ‖∇τ‖C1(Bρ) .

(6.25)
We now flow Σ0 out by Xξ to obtain the claimed pointwise bounds for u = w−

√
2k. Let Φξ(q, t)

be the flow of Xξ from q ∈ Σ0 for time t. We will flow for time
√
ρ2 − 3k and get bounds that

hold for as long as the flow remains within Ωρ. That is, our bounds will hold on the set

Ωξ
ρ = {Φξ(q, t) ∈ Σ | q ∈ Σ0, 0 ≤ t ≤

√
ρ2 − 3k and Φξ(q, s) ∈ Ωρ for all s ≤ t}.

Integrating (6.25) up from Σ0 and using (6.22), we get

sup
Ωξρ

|∇w2| ≤ sup
Σ0

|∇w2|+ ρ sup
Ωρ

|∇Xξ∇w2|

≤ 2 sup
Σ0

|w0| sup
Σ0

|∇w0|+ Cρ4 ‖∇τ‖C1(Bρ)

≤ C(‖∇τ‖C1(B5
√

2n) + ‖φ‖C1(B5
√

2n)) + Cρ4 ‖∇τ‖C1(Bρ)

≤ C ‖φ‖C1(B5
√

2n) + Cρ4 ‖∇τ‖C1(Bρ) .

(6.26)

Integrating (6.26) up from Σ0 and using (6.22), we get

sup
Ωξρ

|w2 − 2k| ≤ sup
Σ0

|w2
0 − 2k|+ ρ sup

Ωξρ

|∇Xξw2|

≤
(

sup
Σ0

|w0 −
√

2k|
)(

sup
Σ0

|w0 −
√

2k|+ 2
√

2k

)
+ ρ sup

Ωξρ

(|Xξ||∇w2|)

≤ Cρ ‖φ‖C1(B5
√

2n) + Cρ5 ‖∇τ‖C1(Bρ) .

(6.27)

If we impose Cρ ‖φ‖C1(B5
√

2n) + Cρ5 ‖∇τ‖C1(Bρ) ≤ 1 (via ε1), then (6.27) yields w ≥ 1 on Ωξ
ρ.
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Thus, for the function u = w −
√

2k, (6.26) gives

sup
Ωξρ

|∇u| = sup
Ωξρ

|∇w| = sup
Ωξρ

∣∣∣∣
∇w2

2w

∣∣∣∣ ≤ Cρ ‖φ‖C1(B5
√

2n) + Cρ4 ‖∇τ‖C1(Bρ) . (6.28)

Also, dividing (6.27) by w+
√

2k > 1 gives the same bound for |u| over Ωξ
ρ. Adding this to (6.28)

gives the C1 bound for u claimed by the proposition, valid on Ωξ
ρ.

Step 5: Showing the bounds hold on all Br ∩ Σ. In this final step we will show that

Bρ ∩ Σ ⊂
⋃

ξ∈Rn−k,|ξ|=1

Ωξ
ρ (6.29)

for all ρ ≤ r, so the pointwise bounds on u from Step 4 hold on Br ∩ Σ, giving the proposition.

Take ξ ∈ Rn−k arbitrary with |ξ| = 1, and let

D = {|h| =
√
ρ2 − 3k, 0 ≤ u ≤

√
3k} ⊂ Bρ.

Since ε1 is small, (6.17) gives that (J i`) is almost the identity and vi is almost equal to vi(p) on
Ωρ. Thus, the flow vector field Xξ = J i`ξ`vi ≈ ξivi(p) is almost constant and directed vertically,
as long as the flow remains within Ωρ.

Considering the C2-closeness to a cylinder in Ck and that p ∈ B2
√

2n, the path distance in Σ

between p and a point on Σ0 is at most 2
√

2n+ π
√

2k +
√

2n < 10
√

2n < 2ρ.3 If we flow Σ0 out
by Xξ for time

√
ρ2 − 3k, we can tighten ε1 to ensure that as long as the flow is within Ωρ,

• Xξ is almost constant and vertical with unit magnitude. Thus the flow lines have length at
most ρ, and 0 ≤ u ≤

√
3k everywhere on the flow lines (recalling u ≈

√
2k on Σ0).

This implies the path distance in Σ from p to any point on a flow line is at most 2ρ+ ρ = 3ρ, and
every flow line hits D before escaping Ωξ

ρ. As D ⊂ Bρ, this shows that the connected component
ofBρ∩Σ containing Σ0 is contained in

⋃
ξ Ωξ

ρ. But there is only one such component by hypothesis
(4) of the proposition, so (6.29) follows and the proof is complete.

Remark 6.16. In the original proof, Step 4 defines a single radial vector field instead of the Xξ

we used, but to our understanding this is ill-defined at Σ0. We would need to extend the vector
field to Σ0 using bump functions and make sure the flow is well-defined starting from Σ0. Our
solution circumvents these difficulties. Our vector fields Xξ are similar to those of [CM19b], but
not exactly the same; ours are constructed so that we could still use some of the computations
in the original Step 4 (with some adjustments).

6.3 The first Łojasiewicz inequality for cylinder-like hypersurfaces

In this section, we will combine the graphical proposition from the preceding section with
Proposition 6.17 below to prove the first Łojasiewicz inequality, Theorem 6.7.

32
√

2n is from p ∈ B2
√

2n; π
√

2k is from the waist circumference of a cylinder in Ck;
√

2n is the tolerance.
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6.3.1 Bounding ∇τ beneath the cylindrical scale

The final ingredient we need is the next proposition, which bounds ‖∇τ‖C1 in terms of ‖φ‖L1

within a suitably chosen cylindrical scale. This is much needed because ∇τ features in the graph-
ical proposition but not in the Łojasiewicz inequality. Our statement uses stronger assumptions
than the one in the paper; this is because the proof needs an |∇`φ| bound from Lemma 6.6, but
the original hypotheses do not seem to enable this.

Proposition 6.17 (1.28). Given n, λ0, ` and K, there exists ε0 = ε0(n) so that the following holds.
If ε ≤ ε0 and Σ ⊂ Rn+1 is a hypersurface with λ(Σ) ≤ λ0, then for all R ≤ rε,`,K(Σ) and r such
that r + 1

1+r < R− 1, we have

‖∇τ‖C1(Br)
≤ CR2n

{
e−d`,n

(R−1)2

8 + ‖φ‖
d`,n

2

L1(BR)

}
e
r2

8 ,

where C = C(n, λ0, ε, `,K), and d`,n ∈ (0, 1)↗ 1 as `→∞.

The proof of this uses two lemmas: a Gaussian L2 bound on τ , and an interpolation inequality.
We state these but exclude their proofs; the L2 bound uses computations similar to §4.2 anyway,
and the interpolation inequality would be too much of a digression for our liking.

Lemma 6.18 (1.25). Let Σ ⊂ Rn+1 be a hypersurface. If BR ∩ Σ is smooth with H ≥ 1
2 and

|A| ≤ K, then there exists C = C(n,K) so that for s ∈ (0, R) we have
∫

BR−s

|∇τ |2e−
|x|2

4 ≤ C
{

1

s2
Hn(BR ∩ Σ)e−

(R−s)2
4 +

∫

BR∩Σ

(
|φ|+ |∇2φ|

)
e−
|x|2

4

}
.

Lemma 6.19 (B.1). Let Σ ⊂ Rn+1 be a hypersurface with |A| + |∇`A| ≤ K on B2r ∩ Σ. For
each j ≤ `, there exists C = C(n, `, j,K) so that if T is a smooth tensor on B2r ∩ Σ, then setting
a`,n,j = `−j

`+n , we have for the unweighted L1 norms
∥∥∇jT

∥∥
L∞(Br)

≤ C
{
r−n−j ‖T‖L1(Br)

+ ‖T‖a`,n,j
L1(B2r)

‖∇`T‖1−a`,n,jL∞(B2r)

}
.

Proof of Proposition 6.17. By Lemma 6.6, for j ≤ ` we have |∇jA|, |∇jτ | ≤ C(ε, j,K) within
BR ∩ Σ. Let y ∈ Σ have |y| = r, so that |y|+ 1

1+|y| < R− 1. Define the ball By and the constant
δy by

By = B 1
1+|y|

(y), δy =

∫

By∩Σ
|∇τ |,

so that By ⊂ BR−1. Applying Lemma 6.19 to ∇τ on the ball 1
2B

y = B 1
2(1+|y|)

(y), we get

|∇τ |(y) ≤ C
{
Rnδy + δ

a`,n
y ‖∇`τ‖1−a`,nL∞(By)

}
≤ C

{
Rnδy + δ

a`,n
y

}
≤ CRnδa`,ny , (6.30)

|∇2τ |(y) ≤ C
{
Rn+1δy + δ

b`,n
y ‖∇`τ‖1−b`,nL∞(By)

}
≤ C

{
Rn+1δy + δ

b`,n
y

}
≤ CRn+1δ

b`,n
y , (6.31)

where a`,n = `
`+n , b`,n = `−1

`+n and C = C(n, ε, `,K). The first inequality in each line comes from
2(1 + |y|) < 2R, while the second and third inequalities use the bounds on |∇`τ |, |∇τ |.

We will bound δa`,ny and δb`,ny on the right of (6.30) and (6.31). For all x ∈ By, we have |x|2 ≤
(|y|+ 1

1+|y|)
2 ≤ |y|2 + 4, where the second inequality is algebraic. Thus

inf
x∈By

e−
|x|2

4 ≥ e−
|y|2

4
−1.
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By Cauchy–Schwarz, the above inequality, polynomial volume growth,4 and Lemma 6.18, we get

(1 + |y|)ne−
|y|2

4
−1δ2

y ≤ (1 + |y|)ne−
|y|2

4
−1Hn(By ∩ Σ)

∫

By∩Σ
|∇τ |2

≤ C(1 + |y|)n ·
(

1

1 + |y|

)n ∫

BR−1∩Σ
|∇τ |2e−

|x|2
4

≤ C
{
Rne−

(R−1)2

4 +

∫

B
R− 1

2
∩Σ

(|φ|+ |∇2φ|)e−
|x|2

4

}
,

(6.32)

where C = C(n, λ0, ε). To bound |∇2φ| on the right, choose balls Bi = B 1
1+|zi|

(zi) such that

• The half-balls 1
2B

i = B 1
2(1+|zi|)

(zi) collectively cover BR− 1
2
∩ Σ;

• Each x ∈ BR− 1
2
∩ Σ is in at most c = c(n) <∞ of the 1

2B
i’s.

Set ri = 1
1+|zi| to simplify notation. Applying Lemma 6.19 on Bi and using Lemma 6.6 to bound

‖∇`φ‖L∞(Bi), we get

sup
1
2
Bi
|∇2φ| ≤ C

{
r−n−2
i

∫

Bi∩Σ
|φ|+

(∫

Bi∩Σ
|φ|
)c`,n}

, (6.33)

where C = C(n, ε, `,K) and c`,n = `−2
`+n . Because 1

2e
− 1

4(z− 1
1+z )

2

≤ e−
z2

4 ≤ 2e−
1
4(z+ 1

1+z )
2

for

all z ≥ 0, we have for each x ∈ Bi that 1
2e
− |zi|

2

4 ≤ e−
|x|2

4 ≤ 2e−
|zi|

2

4 . Together with (6.33),
polynomial volume growth and Hölder’s inequality for sums, this gives

∫

B
R− 1

2
∩Σ
|∇2φ|e−

|x|2
4 ≤

∑

i

∫

1
2
Bi∩Σ

|∇2φ|e−
|x|2

4

≤ C
∑

i

Hn
(

1

2
Bi ∩ Σ

)[
r−n−2
i

∫

Bi∩Σ
|φ|+

(∫

Bi∩Σ
|φ|
)c`,n]

e−
|zi|

2

4

≤ C
∑

i

[
r−2
i

∫

Bi∩Σ
|φ|+ rni

(∫

Bi∩Σ
|φ|
)c`,n]

e−
|zi|

2

4

≤ C
{
R2c

∫

BR∩Σ
|φ|e−

|x|2
4 +

∑

i

(∫

Bi∩Σ
|φ|e−

|x|2
4

)c`,n}

≤ C
[
R2 ‖φ‖L1(BR) + ‖φ‖c`,n

L1(BR)

]
,

(6.34)

where C = C(n, λ0, ε, `,K). This dependence remains for the rest of the proof. By Lemma 6.6,

‖φ‖L1(BR) ≤
∫

BR∩Σ
sup
BR∩Σ

|φ| e−
|x|2

4 +

∫

Σ\BR
e−
|x|2

4 ≤ max
{

1, sup
BR∩Σ

|φ|
}

(4π)
n
2 λ0 = C, (6.35)

so ‖φ‖L1(BR) ≤ C ‖φ‖
c`,n
L1(BR)

. Combining this with (6.32) and (6.34), it follows that

e−
|y|2

4
−1δ2

y ≤ (1 + |y|)ne−
|y|2

4
−1δ2

y ≤ CRne−
(R−1)2

4 + CR2 ‖φ‖c`,n
L1(BR)

.

4Polynomial volume growth on Σ comes from C2,α closeness to a cylinder, the relative volume element formula
from Lemma B.1, and polynomial volume growth on cylinders in Ck.
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Rearranging for δy then using that (a+ b)p ≤ 2p(|a|p + |b|p) for all p ≥ 0, we have

δy ≤
{
CRn

(
e−

(R−1)2

4 + ‖φ‖c`,n
L1(BR)

)
e
|y|2

4

} 1
2

≤ CRn
2

(
e−

(R−1)2

8 + ‖φ‖
c`,n

2

L1(BR)

)
e
|y|2

8 .(6.36)

Substituting this into (6.30) and using (a+ b)p ≤ 2p(|a|p + |b|p) again gives

|∇τ |(y) ≤ CR 3n
2

(
e−

(R−1)2

8 + ‖φ‖
c`,n

2

L1(BR)

)a`,n
ea`,n

|y|2
8

≤ CR 3n
2

(
e−a`,nc`,n

(R−1)2

8 + ‖φ‖
a`,nc`,n

2

L1(BR)

)
e
|y|2

8 ,

(6.37)

since a`,n, c`,n < 1. Likewise, using (6.36) in (6.31) yields

|∇2τ |(y) ≤ CR 3n+2
2

(
e−b`,nc`,n

(R−1)2

8 + ‖φ‖
b`,nc`,n

2

L1(BR)

)
e
|y|2

8 . (6.38)

Adding (6.37) and (6.38) gives the result with d`,n = min{a`,nc`,n, b`,nc`,n}.

6.3.2 Proof of Theorem 6.7

We are ready to prove the first Łojasiewicz inequality for cylinder-like hypersurfaces.

Proof of Theorem 6.7. Let r ∈ (5
√

2n,R). We first estimate the central quantity of Proposition
6.10, which is

r ‖φ‖C1(B5
√

2n) + r5 ‖∇τ‖C1(Br)
. (6.39)

Let a`,n = `
`+n , and take `0 large so that a`,n ≥ 3

4 . By Lemma 6.19 and Lemma 6.6, we bound

‖φ‖L∞(B5
√

2n) ≤ C
{(∫

B10
√

2n∩Σ
|φ|
)

+
(∫

B10
√

2n∩Σ
|φ|
)a`,n‖∇`φ‖1−a`,nL∞(B10

√
2n)

}

≤ C
{
‖φ‖L1(B10

√
2n) + ‖φ‖a`,n

L1(B10
√

2n)

}
≤ C ‖φ‖3/4

L1(BR)
,

(6.40)

where C = C(n, ε, `,K) and we assumed R0 ≥ 10
√

2n in the last inequality. Similarly,

‖∇φ‖L∞(B5
√

2n) ≤ C ‖φ‖
3/4
L1(BR)

. (6.41)

Adding (6.40) and (6.41) gives

‖φ‖C1(B5
√

2n) ≤ C ‖φ‖
3/4
L1(BR)

. (6.42)

Proposition 6.17 gives that if ε0 is small enough (depending on n) and r ≤ R− 2, then

‖∇τ‖C1(Br)
≤ CR2n

{
e−d`,n

R2

8 + ‖φ‖
d`,n

2

L1(BR)

}
e
r2

8 , (6.43)

where C = C(n, λ0, ε, `,K) and lim`→∞ d`,n = 1. Using (6.42) and (6.43), we can bound (6.39):

r ‖φ‖C1(B5
√

2n) + r5 ‖∇τ‖C1(Br)
≤ CR ‖φ‖3/4

L1(BR)
+ CR2n+5

{
e−d`,n

R2

8 + ‖φ‖
d`,n

2

L1(BR)

}
e
r2

8

≤ ČR2n+5

{
‖φ‖

d`,n
2

L1(BR)
+ e−d`,n

R2

8

}
e
r2

8 ,

(6.44)
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where Č = Č(n, λ0, ε, `,K), and the second inequality uses (6.35) to bound ‖φ‖3/4
L1(BR)

by

‖φ‖d`,n/2
L1(BR)

. To compactify notation, define (?R,r,`,n) and C̃ = C̃(n, λ0, ε, `,K) by

(?R,r,`,n) = R2n+5

{
‖φ‖

d`,n
2

L1(BR)
+ e−d`,n

R2

8

}
e
r2

8 and C̃ =
ε1

Č
,

where ε1 = ε1(n) is given by Proposition 6.10. We may suppose ε0 is less than that of Proposition
6.10, and tight enough to guarantee H ≥ 1

2 on BR ∩ Σ by Lemma 6.6. Thus, if r is such that
(?R,r,`,n) ≤ C̃, then by (6.44),

r ‖φ‖C1(B5
√

2n) + r5 ‖∇τ‖C1(Br)
≤ ČC̃ ≤ ε1. (6.45)

Hence, by Proposition 6.10, Br ∩ Σ is the graph of u over a cylinder Γ ∈ Ck with

|u(x)|+ |∇u(x)| ≤ C
{
r ‖φ‖C1(B5

√
2n) + r5 ‖∇τ‖C1(B|x|)

}

≤ CR2n+5

{
‖φ‖

d`,n
2

L1(BR)
+ e−d`,n

R2

8

}
e
|x|2

8 ,
(6.46)

where C = C(n, λ0, ε, `,K) and we used (6.44). Note that (6.45) and (6.46) still hold for any
smaller C̃ as long as (?R,r,`,n) ≤ C̃. This is important as we will shrink C̃ in the next theorem.

Let r∗ = sup{r ≤ R− 2 | (?R,r,`,n) ≤ C̃}. By (6.46), the fact that u = wΓ −
√

2k, and r∗ < R and
polynomial volume growth, we get

∫

Br∗∩Σ
(wΓ(x)−

√
2k)2e−

|x|2
4 ≤ CR4n+10

{
‖φ‖d`,n

L1(BR)
+ e−d`,n

R2

4

}
Hn (Br∗ ∩ Σ)

≤ CR5n+10

{
‖φ‖d`,n

L1(BR)
+ e−d`,n

R2

4

}
.

(6.47)

Since R ≥ R0, we can demand that R0 is large enough so that

R2n+5e−d`,n
R2

8 e
(R−2)2

8 ≥ C̃, (6.48)

which in turn implies (?R,R−2,`,n) ≥ C̃. This makes R0 have the dependencies stated in the
theorem. By the definition of r∗ and the fact that (?R,r,`,n) is increasing in the r slot, we must
have (?R,r∗,`,n) = C̃. Using this and the geometric inequality |wΓ(x)−

√
2k| ≤ |x|, we can bound

∫

(BR\Br∗ )∩Σ
(wΓ(x)−

√
2k)2e−

|x|2
4 ≤ Hn (BR ∩ Σ)R2e−

r2∗
4 ≤ CRn+2e−

r2∗
4

≤ C

C̃2
R5n+12

{
‖φ‖d`,n

L1(BR)
+ e−d`,n

R2

4

}
.

(6.49)

But C/C̃2 is just another C, so adding (6.47) and (6.49) completes the proof of Theorem 6.7.

Remark 6.20. Had we not imposed the R ≥ R0 lower bound via (6.48), then we cannot say that
(?R,r∗,`,n) = C̃, and the last inequality in (6.49) fails. This is not addressed in the original paper.

Branching off the above proof yields a similar theorem which later supplies the improvement
step (Theorem 6.27). Unlike the above proof where only the C0 bound of Proposition 6.10 was
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used (in (6.47)), the proof below truly needs the C1 bound for interpolation. In the theorem we
will reuse the quantity (?R,r,`,n) from above, defined by

(?R,r,`,n) = R2n+5

{
‖φ‖

d`,n
2

L1(BR)
+ e−d`,n

R2

8

}
e
r2

8 . (6.50)

Theorem 6.21. Let n be given, and let Theorem 6.7 provide ε0 = ε0(n) and `0 = `0(n). Suppose
λ0 > 0, ε ≤ ε0, ` ≥ `0, K > 0, and Σ ⊂ Rn+1 is a hypersurface with λ(Σ) ≤ λ0. Then there exists
R0 so that whenever R ∈ [R0, rε,`,K(Σ)] and ε > 0, we can find C̃ = C̃(n, λ0, ε, `,K, ε) such that
Br∗ ∩ Σ is graphical over a cylinder Γ ∈ Ck with ‖u‖C1 ≤ ε, where

r∗ = sup{r ≤ R− 2 | (?R,r∗,`,n) ≤ C̃}.

Moreover, it holds that (?R,r∗,`,n) = C̃ and

∥∥∥wΓ −
√

2k
∥∥∥

2

L2(BR∩Σ)
≤ CRρ

{
‖φ‖d`,n

L1(BR)
+ e−d`,n

R2

4

}
,

where C = C(n, λ0, ε, `,K), ρ = ρ(n) and d`,n ∈ (0, 1)↗ 1 as `→∞.

Proof. Follow the proof of Theorem 6.7 up to and including (6.46). By then, we established that
if r ≤ R− 2 and (?R,r,`,n) ≤ C̃, then Br ∩ Σ is the graph of u over a cylinder Γ ∈ Ck with

|u(x)|+ |∇u(x)| ≤ C(?R,|x|,`,n),

where C, C̃ both depend on n, λ0, ε, `,K. Use this with r = r∗, so that on Br∗ ∩ Σ we have

|u(x)|+ |∇u(x)| ≤ C(?R,r∗,`,n) ≤ CC̃,

As stated after (6.46), this also holds if we shrink C̃. Thus we assume C̃ ≤ ε
C so the above reads

‖u‖C1 ≤ CC̃ ≤ ε.

Shrinking C̃ this way introduces an ε dependence, which agrees with the theorem statement. To
get the lower bound R0, the equality (?R,r∗,`,n) = C̃, and the claimed L2 estimate for wΓ −

√
2k,

continue as in the proof of Theorem 6.7, starting from (6.47).

6.4 The gradient Łojasiewicz inequality for cylinder-like hypersur-
faces

In §5, the Łojasiewicz–Simon gradient inequality was established by Lyapunov–Schmidt reduc-
tion. This involved functional analysis over a compact manifold M , where M was eventually
taken as the compact tangent flow in question. This made sense, since the timeslices of the RMCF
were normal graphs of functions over M (at least for some times). However, when the tangent
flow is cylindrical, the compact moving hypersurfaces are never graphs over the whole cylinder.
We need new methods to obtain a gradient inequality suited to our purposes.

Let Γ ∈ Ck. We will use the FΓ-functional, its Euler–Lagrange functionalMν
Γ and the linearisation

L at zero. These were defined in (4.2), (4.7) and (4.8) respectively (replace Σ with Γ). Then L
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is elliptic with finite-dimensional kernel K. We let Π and (·)⊥ denote orthogonal projection to K
using the Gaussian L2 inner product (4.4).

Let Σ ⊂ Rn+1 be a hypersurface. In this section, we will prove Theorem 6.8 as follows.

(1) In a region BR ∩ Σ where Σ is the graph of u over a cylinder, we will estimate |F(BR ∩
Σ)−F(Ck)| when u is close to K, and when u is far from K.

(2) Outside BR, we will use a cutoff which generates error terms. Together with the last step,
this gives a preliminary estimate for |F(Σ)−F(Ck)|, which is Theorem 6.22.

(3) We will use the first Łojasiewicz inequality to shape this estimate into the required form.

Step (1) is reminiscent of the proof of Theorem 5.3: there we divided the proof into estimating
the difference in the energy functional E in a direction almost along K, and the difference in
a direction almost orthogonal to K. Step (2) is new here, as Σ is not a global graph over the
cylinder. Step (3) is also new, but not unexpected as Łojasiewicz originally used (5.1) to prove
(5.2); we bypassed this earlier by taking (5.2) as given.

6.4.1 A preliminary gradient estimate

In this subsection, we prove a preliminary estimate for |F(Σ)−F(Ck)| which reads:

Theorem 6.22 (4.1). Given n and λ0, there exists ε = ε(n) so that if Σ ⊂ Rn+1 is a hypersurface
with λ(Σ) ≤ λ0, and Σ is (ε, R̃, C2)-close to a cylinder Γ ∈ Ck with graph function ũ, then for any
β ∈ [0, 1)

|F(Σ)−F(Ck)| ≤ C
{
‖φ‖

3+β
2

L2(B
R̃
∩Σ)

+ (1 + R̃ρ)e−
(3+β)(R̃−1)2

16 + ‖ũ‖
3+β
1+β

L2(B
R̃
∩Γ)

}
,

where C = C(n, λ0), ρ = ρ(n).

To prove this, we need estimates that lead to a bound for |F(B
R̃
∩ Σ)−F(Ck)| in the two cases

for ũ indicated in Step (1) above. This proceeds similarly to Lemma 5.4, but is more involved
as one now has to deal with noncompactness of the cylinder. We will skip this rather tedious
process, seeing as the original paper already covers it in detail and we found no issues with the
presentation. The next two lemmas summarise the results of this analysis. Here we use a new
quantity ‖·‖2 for functions on a cylinder Γ ∈ Ck, defined by

‖u‖2 =
∥∥∥u2 + |∇u|2 + |∇2u(·,Rn−k)|2 + (1 + |x|)−1|∇2u|

∥∥∥
L2
,

where Rn−k refers to the flat directions of Γ.5 We abbreviateMν
Γ toM for the rest of this section.

Lemma 6.23 (3.11, 3.23). Let Γ ∈ Ck. There exists C0 and µ > 0 depending on n so that for all
u ∈W 2,2(Γ),

‖Lu‖L2 ≤ C0 ‖u‖W 2,2 , (6.51)

µ‖u⊥‖W 2,2 ≤ ‖Lu‖L2 , (6.52)

‖u‖2 ≤ C0 ‖Πu‖2L2 , (6.53)

‖u⊥‖2 ≤ C0 ‖u‖C2 ‖u⊥‖W 2,2 . (6.54)
5This is not a norm, since ‖au‖2 = a2 ‖u‖2 for a ∈ R.
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Lemma 6.24 (4.3). Let Γ ∈ Ck. There exist C1 and ε depending on n so that if u ∈ C2(Γ) has
‖u‖C2 ≤ ε, then

‖Mu− Lu‖L2 ≤ C1 ‖u‖2 ,∣∣∣∣FΓ(u)−F(Ck)−
1

2

〈
u⊥, Lu⊥

〉
L2(Γ)

∣∣∣∣ ≤ C1 ‖u‖L2 ‖u‖2 .

Proof of Theorem 6.22. We first extend ũ to an entire graph over Γ so that Lemmas 6.23 and 6.24
can be used. Thus we fix a cutoff function ψ with 0 ≤ ψ ≤ 1 which is one on B

R̃−1
and zero

outside B
R̃

. Define u = ψũ on B
R̃

, and u = 0 otherwise. Then

‖u‖C2 ≤ C ‖ũ‖C2 ≤ Cnε, (6.55)

where Cn depends only on the C2 norm of ψ, hence only on n. Since Σ and graphΓ(u) coincide
in B

R̃−1
and 0 ≤ ψ ≤ 1, Lemma 6.2 gives C = C(n, λ0) and ρ = ρ(n) so that

|F(Σ)−FΓ(u)| ≤ (4π)−
n
2

∫

Σ\B
R̃−1

e−
|x|2

4 ≤ CR̃ρe−
(R̃−1)2

4 . (6.56)

SinceMu ≈ φ on B
R̃−1

(Proposition B.2, where φ is the φ of Σ), andMu = 0 outside B
R̃

,

‖Mu‖L2 ≤ C ‖φ‖L2(B
R̃−1
∩Σ) + ‖Mu‖L2(Γ∩(B

R̃
\B

R̃−1
)) ≤ C ‖φ‖L2(B

R̃
∩Σ) + Cn,εe

− (R̃−1)2

8 . (6.57)

Here we used (6.55) to control |Mu| by a constant depending on n and ε since Mu depends
on up to second derivatives of u (by Lemma B.1 and Proposition B.2), and that the volume of
Γ ∩ (B

R̃
\B

R̃−1
) depends only on n. Now let

F0(u) = FΓ(u)−F(Ck).

If ε is small depending on n, then (6.55) bounds ‖u‖C2 tightly enough so that Lemma 6.24 gives
C1 = C1(n) such that

| ‖Mu‖L2 − ‖Lu‖L2 | ≤ C1 ‖u‖2 , (6.58)
∣∣∣∣F0(u)− 1

2

〈
u⊥, Lu⊥

〉
L2

∣∣∣∣ ≤ C1 ‖u‖L2 ‖u‖2 . (6.59)

Let β ∈ [0, 1). We will bound |F0(u)| in two cases depending on how close u is to the kernel of L.
We will then combine this with (6.56) to bound |F(Σ)−F(Ck)| as required.

Case 1: Suppose that u is almost normal to the kernel in the sense that

‖Πu‖2 ≤ ε‖u⊥‖
1+β
W 2,2 , (6.60)

where ε > 0 is chosen below. Note that by (6.54), (6.60) and (6.55),

‖u‖2 ≤ 2 ‖Πu‖2 + 2‖u⊥‖2 ≤ 2(C2ε+ C0Cnε)‖u⊥‖W 2,2 , (6.61)

where C0 and Cn depend on n, and ‖u⊥‖1+β
W 2,2 ≤ C2(n, λ0, ε)‖u⊥‖W 2,2 . Now by (6.58), (6.52)

and (6.61), there exists µ = µ(n) so that

‖Mu‖L2 ≥ ‖Lu‖L2 − C1 ‖u‖2 ≥ µ‖u⊥‖W 2,2 − C1 ‖u‖2
≥ (µ− 2C1(C2ε+ C0Cnε))‖u⊥‖W 2,2 .
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Shrink ε depending on n so that C0C1Cnε <
µ
8 . Also choose ε > 0 depending on n, λ0, ε so that

C1C2ε <
µ
8 . Then

‖Mu‖L2 ≥ µ

2
‖u⊥‖W 2,2 . (6.62)

We have tightened ε twice so far, both times depending on n. From now on, ε = ε(n) will be
fixed. All constants C in the rest of the proof depend on (at most) n and λ0. By (6.59), (6.51),
(6.61) and the triangle inequality ‖u‖L2 ≤ ‖u⊥‖L2 + ‖Πu‖L2 , we have

|F0(u)| ≤ C‖u⊥‖L2‖u⊥‖W 2,2 + C1 ‖u‖L2 ‖u‖2 (6.63)

≤ C‖u⊥‖L2‖u⊥‖W 2,2 + C ‖Πu‖L2 ‖u⊥‖W 2,2 .

Since ‖Πu‖2L2 ≤ C
∥∥(Πu)2

∥∥
L2 ≤ C ‖Πu‖2 by Hölder’s inequality and the entropy bound, we can

bound the second term above:

C ‖Πu‖L2 ‖u⊥‖W 2,2 ≤ C ‖Πu‖1/22 ‖u⊥‖W 2,2 ≤ C‖u⊥‖
3+β

2

W 2,2 ,

where the last inequality is (6.60). Using this with ‖u⊥‖L2 ≤ ‖u⊥‖W 2,2 , (6.63) becomes

|F0(u)| ≤ C‖u⊥‖2W 2,2 + C‖u⊥‖
3+β

2

W 2,2 ≤ C‖u⊥‖
3+β

2

W 2,2 . (6.64)

But now (6.62), (6.57) and Peter-Paul allow us to further estimate

|F0(u)| ≤ C ‖Mu‖
3+β

2 ≤ C ‖φ‖
3+β

2

L2(B
R̃

)
+ Ce−

(3+β)(R̃−1)2

16 .

Case 2: Suppose that u is close to the kernel in that

‖Πu‖2 > ε‖u⊥‖1+β
W 2,2 , (6.65)

where ε was chosen in Case 1. We also get a similar inequality for ‖u⊥‖2 using (6.54):

‖u⊥‖2 ≤ C0 ‖u‖C2 ‖u⊥‖W 2,2 ≤ C ‖Πu‖
1

1+β

2 ,

where we have used ‖u‖C2 ≤ ε = ε(n) and (6.65) (recall that ε depends on n, λ0). This yields

‖u‖2 ≤ 2 ‖Πu‖2 + 2‖u⊥‖2 ≤ C ‖Πu‖
1

1+β

2 . (6.66)

We use (6.65) and (6.66) to continue off the first line of (6.63) (which does not depend on the
Case 1 assumption), giving

|F0(u)| ≤ 2C ‖u‖L2 ‖Πu‖
1

1+β

2 .

But (6.53) gives ‖Πu‖2 ≤ C0 ‖Πu‖2L2 ≤ C0 ‖u‖2L2 , where C0 = C0(n). Hence

|F0(u)| ≤ 2C ‖u‖
3+β
1+β

L2 ≤ C ‖ũ‖
3+β
1+β

L2(B
R̃

)
, (6.67)

the last inequality due to the fact that u vanishes outside B
R̃

and u ≤ ũ.

Adding (6.64) and (6.67) to account for both cases at once, we get

|F0(u)| ≤ C ‖φ‖
3+β

2

L2(B
R̃
∩Σ)

+ Ce−
(3+β)(R̃−1)2

16 + C ‖ũ‖
3+β
1+β

L2(B
R̃

)
.

Finally, we use the cutoff bound (6.56) to get

|F(Σ)−F(Ck)| ≤ |F(Σ)−FΓ(u)|+ |F0(u)|

≤ C ‖φ‖
3+β

2

L2(B
R̃
∩Σ)

+ C(1 + R̃ρ)e−
(3+β)(R̃−1)2

16 + C ‖ũ‖
3+β
1+β

L2(B
R̃

)
,

which is the claimed estimate.
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6.4.2 Proof of Theorem 6.8

The preliminary estimate of Theorem 6.22 has an unwanted ‖ũ‖L2(B
R̃

) term. We will use the first
Łojasiewicz to swallow this into the other terms, giving us the gradient Łojasiewicz inequality of
Theorem 6.8. As we will be writing Σ as a graph over two possibly different cylinders, we need a
way to make their graphical bounds compatible. The next lemma takes care of this.

Lemma 6.25 (4.50). There exists ε0 = ε0(n) so that if Γ ∈ Ck, 5
√

2n ≤ R1 < R2 and

• BR1 ∩ Σ is graphical over Γ with the graph function u satisfying ‖u‖C1 ≤ ε0;

• Σ is (ε0, R2, C
2,α)-close to a cylinder in Ck,

then for R̄ = min{2R1, R2}, we have that BR̄ ∩ Σ is graphical over Γ for an extension ū of u
satisfying ‖ū‖C2 ≤ ε, where ε = ε(n) is given by Theorem 6.22.

Proof of Theorem 6.8. Let ε0 be the lesser of Theorem 6.7 and Lemma 6.25. Let ε = ε(n) be
given by Theorem 6.22. By Theorem 6.21, there exists C̃ = C̃(n, λ0, ε, `,K) such that Br∗ ∩ Σ is
graphical over some Γ ∈ Ck with ‖u‖C1 ≤ ε0, where

r∗ ≤ R− 2, (?R,r∗,`,n) = C̃.

By Lemma 6.25, for R̄ = min{2r∗, R} we can write BR̄ ∩ Σ as a graph of ū over Γ such that
‖ū‖C2 ≤ ε̄. Moreover, Theorem 6.21 gives

‖ū‖2L2(BR̄) ≤ ‖ū‖2L2(BR) ≤ CRρ
{
‖φ‖d`,n

L1(BR)
+ e−d`,n

R2

4

}
, (6.68)

where C = C(n, λ0, ε, `,K) and ρ = ρ(n). Now Theorem 6.22 gives that for all β ∈ [0, 1),

|F(Σ)−F(Ck)| ≤ C ′
{
‖φ‖

3+β
2

L2(BR̄)
+ (1 + R̄ρ

′
)e−

(3+β)(R̄−1)2

16 + ‖ū‖
3+β
1+β

L2(BR̄)

}
, (6.69)

where C ′ = C ′(n, λ0) and ρ′ = ρ′(n). We aim to express everything in terms of a power of R
times ‖φ‖L2(BR), allowing for exponentially decaying terms in R. If R̄ = R, the first two terms
are sorted, while the last term satisfies (by (6.68))

‖ū‖
3+β
1+β

L2(BR̄)
≤ CR

ρ(3+β)
2+2β

{
‖φ‖d`,n

3+β
2+2β

L1(BR)
+ e
−
d`,n(3+β)R2

8(1+β)

}
, (6.70)

which is of the desired form. If R̄ 6= R, the second term of (6.69) also needs to be managed. In
this case R̄ = 2r∗, so we use (?R,r∗,`,n) = C̃ to estimate

e−
R̄2

8 =

(
e−

r2∗
8

)4

= C̃−4R8n+20

{
e−d`,n

R2

8 + ‖φ‖
d`,n

2

L1(BR)

}4

≤ CR8n+20

{
e−d`,n

R2

2 + ‖φ‖2d`,n
L2(BR)

}
,

(6.71)

where C = C(n, λ0, ε, `,K), and the inequality uses ‖φ‖L1(BR) ≤ C(n, λ0) ‖φ‖L2(BR). We can
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assume R̄ > 4 so that
(
R̄−1
R̄

)2
> 1

2 . Raising (6.71) to the 3+β
2

(
R̄−1
R̄

)2
> 3+β

4 power, we get

e−
(3+β)(R̄−1)2

16 ≤
(
e−

R̄2

8

) 3+β
4

≤ CR(2n+5)(3+β)

{
e−d`,n

(3+β)R2

8 + ‖φ‖d`,n
3+β

2

L2(BR)

}

≤ CR8n+20

{
e−

(3+β)(R−1)2

16 + ‖φ‖d`,n
3+β

2

L2(BR)

}
,

(6.72)

where the last inequality assumes `0 is large so that d`,n ≥ 1
2 . Putting (6.70) and (6.72) back into

(6.69), |F(Σ)−F(Ck)| is bounded above by C(n, λ0, ε, `,K)Rρ
′

times

‖φ‖
3+β

2

L2(BR̄)
+

(
e−

(3+β)(R−1)2

16 + ‖φ‖d`,n
3+β

2

L2(BR)

)
+

(
‖φ‖d`,n

3+β
2+2β

L2(BR)
+ e
−
d`,n(3+β)R2

8(1+β)

)
.

Finally, arguing as in (6.35), we can bound ‖φ‖L2(BR) independently of R. This allows to absorb
the first and third terms into the fourth at the cost of another factor of C = C(n, λ0, ε, `,K).

6.5 A scale comparison theorem

We now lay the groundwork for turning the gradient inequality, Theorem 6.8, into the discrete
differential inequality (6.2) for an RMCF Σs. As explained in the synopsis, this is done by choosing
β, ` and K large in Theorem 6.8. On the other hand, ε will not need to be tightened further.
Hence, for the rest of this chapter, we reserve ε0 to mean the ε0(n) of Theorem 6.8, and we will
use ε = ε0 in our cylindrical scales.

In this section, we will show how K should be chosen depending on β and ` (in fact just `). We
will choose K to bound both error terms in the gradient inequality by a power greater than one
of F(ΣT−1)−F(ΣT+1). By the synopsis, this is a matter of choosing K large (given `) so that

rε0,`,K(ΣT ) ≥ (1 + µ)R(ΣT ) (6.73)

for some µ > 0. Recall that R(ΣT ) is the shrinker scale of the RMCF at time T , defined by

e−
R(ΣT )2

2 = F(ΣT−1)−F(ΣT+1) =

∫ T+1

T−1
‖φ‖2L2(Σs)

.

The main theorem of this section says that if the RMCF is almost cylindrical for all times close to
T , then to each ` there exists a K (here called C`) making (6.73) true.

Theorem 6.26 (Scale comparison, 5.3). Given n and λ0, there exist εE , R1, {C`}`∈N0 and µ > 0

such that the following holds. If Σs is an RMCF with λ(Σs) ≤ λ0, and there exists R ∈ [R1, R(ΣT )]

such that for all s ∈ [T − 1
2 , T + 1], Σs is (εE , R, C

2,α)-close to a cylinder (depending on s), then

(i) (1 + µ)R(ΣT ) ≤ rε0,`,C`(ΣT ) for each ` ∈ N0, and

(ii) ‖φ‖2L2(B(1+µ)R(ΣT )∩ΣT ) ≤ C(F(ΣT−1)−F(ΣT+1)).

It is crucial that µ is independent of `, because in the next section we will use this µ to select β
and ` large. Once ` is chosen, this theorem automatically comes back to select K = C` to bound
the error terms as mentioned above.
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Theorem 6.26 is proved by an extension-improvement iteration scheme. The extension step
turns (εE , R, C

2,α)-closeness into (ε0, (1 + µ)R,C2,α)-closeness as long as R ≤ R(ΣT ). The
improvement step will turn this into (εE , (1−θ)(1+µ)R,C2,α)-closeness, the point being that we
are able to choose θ < µ so that the C2,α εE-closeness extends to a larger scale. Provided we are
beneath the shrinker scale, the two steps can be iterated which eventually yields the theorem.

This section corresponds to Section 5 of the original paper [CM15]. However, the original version
of Theorem 6.26 does not seem accurate to us, and some of the lemmas there are not used in the
way that they are stated. While attempting to understand that part of the paper, we drew from
Mantoulidis’ notes [Man14] and Zhu’s paper [Zhu20]. This section synthesises the statements
and proofs from these sources, as well as our own arguments, into a careful proof of Theorem
6.26. Whilst our treatment is quite technical, we believe it is accurate.6

6.5.1 Improvement step

The improvement step will come from combining Theorem 6.21 with additional interpolation.

Theorem 6.27 (Improvement step). Given θ ∈ (0, 1), there exists `0 = `0(n, θ) so that if εE , λ0,K,C

are positive and ` ≥ `0, there exists R2 such that the following holds. If Σ is a hypersurface with
λ(Σ) ≤ λ0, R∗ ≥ R2, and R ∈ [R2, R∗] is such that

• R ≤ rε0,`,K(Σ) and ‖φ‖2L2(BR∩Σ) ≤ Ce−
R2
∗

2 ,

then Σ is (εE , (1− θ)R,C2,α)-close to a cylinder in Ck.

Proof. Let ε > 0, to be chosen shortly. We may take R2 to be greater than the R0 = R0(n, λ0, `,K)

of Theorem 6.21 (where we used ε = ε0(n)). By Theorem 6.21, there exists C̃ = C̃(n, λ0, `,K, ε)

such that Br∗ ∩ Σ is graphical over a cylinder in Ck with ‖u‖C1 ≤ ε, where

r∗ = sup{r ≤ R− 2 | (?R,r,`,n) ≤ C̃},

and (?R,r,`,n) is given by (6.50). We will select ε to get εE-tight C2,α bounds by interpolation.
Namely, for every η > 0 there exists Cη,` such that

‖u‖C2,α ≤ η ‖u‖C`+2 + Cη,` ‖u‖C1 ≤ η ‖u‖C`+2 + Cη,`ε. (6.74)

Since r∗ < R ≤ rε0,`,K(Σ), we can control ‖u‖C`+2 by C(n, `,K). Thus, η can be selected
depending on n, `, K and εE so that η ‖u‖C`+2 ≤ εE

2 . Then choose ε small so that Cη,`ε ≤ εE
2 .

Substituting back into (6.74) gives
‖u‖C2,α ≤ εE . (6.75)

Choosing ε this way means ε depends on n,K, εE , `. Then C̃ = C̃(n, λ0, `,K, ε) = C̃(n, λ0, `,K, εE).

The bound (6.75) is on Br∗ ∩Σ, but the theorem asserts that it holds on B(1−θ)R ∩Σ. It therefore
remains to show r∗ ≥ (1− θ)R. By the definition of r∗, this is equivalent to showing

(1− θ)R ≤ R− 2 and
(
?R,(1−θ)R,`,n

)
≤ C̃. (6.76)

6It would be too pedantic to list all of our contributions, as these mostly have to do with how we drew from these
sources to reconcile the minute details in the proof of Theorem 6.26. As for our ‘original’ mathematical arguments,
these are the proofs of Theorem 6.28 and Lemma 6.34 (though the results are by no means novel).
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To get the inequality on the right, Hölder’s inequality gives C = C(λ0, C) such that

‖φ‖
d`,n

2

L1(BR)
≤ C ‖φ‖

d`,n
2

L2(BR)
≤ Ce−d`,n

R2
∗

8 ,

where d`,n is in the definition of (?R,r,`,n) and has lim`→∞ d`,n = 1. The second inequality is
from the hypotheses. Choosing `0 large so that d`,n ≥ 1 − θ

2 , and keeping in mind R ≤ R∗ and
(1− θ)2 < 1− θ, we get

(?R,(1−θ)R,`,n) = R2n+5

{
‖φ‖

d`,n
2

L1(BR)
+ e−d`,n

R2

8

}
e

(1−θ)2R2

8

≤ CR2n+5

{
e−d`,n

R2
∗

8 + e−d`,n
R2

8

}
e

(1−θ)R2

8

≤ CR2n+5e−d`,n
R2

8 e
(1−θ)R2

8

≤ CR2n+5e−
θR2

16 .

Choose R2 large to further bound this by C̃, so the second inequality of (6.76) holds. In doing
this, R2 inherits the dependencies of C and C̃, and also depends on θ. This is consistent with the
theorem statement. Finally, increase R2 depending on θ to get the first inequality in (6.76).

6.5.2 Extension step

We turn to the extension step for this subsection.

Theorem 6.28 (Extension step). Given n and λ0, there exist εE , R1, C, {C`}`∈N0 and µ > 0 such
that the following holds. If Σs flows by RMCF and λ(Σs) ≤ λ0, and there exists R ∈ [R1, R(ΣT )]

such that for all s ∈ [T − 1
2 , T + 1], Σs is (εE , R, C

2,α)-close to a cylinder Γs ∈ Ck (depending on s),
then for all s ∈ [T − 1

2 , T + 1]:

(i) (1 + µ)R ≤ rε0,`,C`(Σs) for each ` ∈ N0, and

(ii) ‖φ‖2L2(B(1+µ)R∩Σs)
≤ C(F(ΣT−1)−F(ΣT+1)).

To prove this, we will:

• Use standard technical results for (R)MCF to uniformly bound all covariant derivatives of
A in a multiplicatively larger ball B(1+µ)R, giving the constants C`. This is Proposition 6.32.

• Turn these curvature bounds into graphical bounds over a cylinder in the time interval
[T − 1

2 , T + 1] using a uniform stability lemma for RMCF (Lemma 6.34). This together with
the previous step yields conclusion (i) of the theorem.

• Obtain the ‖φ‖2L2 bound of (ii) using a mean value inequality (Lemma 6.35).

We begin by stating three regularity results needed for Proposition 6.32. The first two are stan-
dard results due to White [Whi05] and Ecker–Huisken [EH91] respectively. Our statements are
Theorem 5.6 and Proposition 3.22 in [Eck04] respectively.7

7The statements there are for MCF, but are rescaled to RMCF Σs by writing Mt =
√
−tΣs where t = −es0−s and

Mt is the MCF with M−1 = Σs0 .
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Lemma 6.29 (Brakke–White regularity theorem). Given n and λ0, there exist ε and C0 such that
if Σs is an RMCF in Rn+1 with λ(Σs) ≤ λ0, and for some τ ∈ (0, 1) and x0 ∈ Rn+1 we have

(4πτ)−
n
2

∫

Σs0

e−
|x−x0|

2

4τ ≤ 1 + ε,

then for all s ∈
[
s0 − log

(
1− 3τ

4

)
, s0 − log(1− τ)

)
we have

sup

Σs∩B√τ
2

(
e

1
2 (s−s0)x0

) |A|2 ≤ C0

τ
.

Lemma 6.30 (Ecker–Huisken estimates). Suppose Σs is an RMCF in Rn+1 on a time interval
(s0− log(1− τ +ρ2), s0− log(1− τ)), and there exists C0 such that for all s in this interval, we have

sup

Σs∩Bρ
(
e

1
2 (s−s0)x0

) |A|2 ≤ C0

ρ2
.

Then for any θ ∈ (0, 1) and ` ∈ N, it holds for all s ∈ (s0 − log(1− τ + θ2ρ2), s0 − log(1− τ)) that

sup

Σs∩Bθρ
(
e

1
2 (s−s0)x0

) |∇`A|2 ≤ C`
ρ2(`+1)

,

where C` = C`(n, `, θ, C0).

The third regularity lemma bounds the change in the Fx0,τ functional on the RMCF over time.

Lemma 6.31 (5.15). Given ε > 0, τ ∈ (0, 1), n and λ0, there exists R0 = R0(ε, τ, n, λ0) and
σ = σ(n, ε, λ0) ≥ 2 so that if Σs flows by RMCF, λ(Σs) ≤ λ0, R ∈ [R0, R(ΣT )], x0 ∈ BR−σ and

(4πτ)−
n
2

∫

ΣT+1

e−
|x−x0|

2

4τ ≤ 1 +
ε

2
, (6.77)

then for all s0 ∈ [T − 1, T + 1] we have

(4πτ)−
n
2

∫

Σs0

e−
|x−x0|

2

4τ ≤ 1 + ε.

Proof. By Lemma 6.2, there exists σ = σ(n, ε, λ0) such that for all y ∈ Rn+1 and all s,

(4πτ)−
n
2

∫

Σs\Bσ√τ (y)
e−
|x−y|2

4τ ≤ ε

4
. (6.78)

Equation (5.21) in [CM15] reads8

∫

BR∩Σs0

e−
|x−x0|

2

4τ ≤
∫

BR+2∩ΣT+1

e−
|x−x0|

2

4τ +

∫ T+1

s0

∫

BR+2∩Σs

φ2

+

(
1 +

|x0|
τ + ( 1

τ − 1)(R+ 2)

2

)∫ T+1

s0

∫

BR+2∩Σs

|φ|e−
|x−x0|

2

4τ .

(6.79)

8We skip the derivation which is a rudimentary computation using Lemma 5.10 and equation (5.20) in [CM15].
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Since x0 ∈ BR−σ ⊂ BR−2 and τ ∈ (0, 1), we have

1 +
|x0|
τ + ( 1

τ − 1)(R+ 2)

2
≤ 1 +

R+ 2

2τ
+
R+ 2

2τ
− R+ 2

2
≤ R+ 2

τ
.

Therefore, (6.79) becomes
∫

BR∩Σs0

e−
|x−x0|

2

4τ ≤
∫

BR+2∩ΣT+1

e−
|x−x0|

2

4τ +

∫ T+1

T−1

∫

BR+2∩Σs

φ2

+
R+ 2

τ

∫ T+1

T−1

∫

BR+2∩Σs

|φ|e−
|x−x0|

2

4τ .

(6.80)

Using λ(Σs) ≤ λ0 and the Cauchy–Schwarz inequality, we can bound the third term:

∫ T+1

T−1

∫

BR+2∩Σs

|φ|e−
|x−x0|

2

4τ ≤
(∫ T+1

T−1

∫

BR+2∩Σs

φ2e−
|x−x0|

2

4τ

)1/2(∫ T+1

T−1

∫

BR+2∩Σs

e−
|x−x0|

2

4τ

)1/2

≤
√

(4πτ)
n
2 2λ0

(∫ T+1

T−1

∫

BR+2∩Σs

φ2

)1/2

≤ e
(R+2)2

8

√
(4πτ)

n
2 2λ0

(∫ T+1

T−1
‖φ‖2L2(Σs)

)1/2

= e
(R+2)2

8
−R(ΣT )2

4

√
(4πτ)

n
2 2λ0,

(6.81)

where the last equality is the definition of R(ΣT ). For the second term in (6.80), we have

∫ T+1

T−1

∫

BR+2∩Σs

φ2 ≤ e
(R+2)2

4

∫ T+1

T−1
‖φ‖2L2(Σs)

= e
(R+2)2

4
−R(ΣT )2

2 . (6.82)

Putting (6.81) and (6.82) back into (6.80), we compute
∫

Σs0

e−
|x−x0|

2

4τ =

∫

BR∩Σs0

e−
|x−x0|

2

4τ +

∫

Σs0\BR
e−
|x−x0|

2

4τ

≤
∫

BR+2∩ΣT+1

e−
|x−x0|

2

4τ + e
(R+2)2

4
−R(ΣT )2

2

+
R+ 2

τ
e

(R+2)2

8
−R(ΣT )2

4

√
(4πτ)

n
2 2λ0 +

∫

Σs0\Bσ√τ (x0)
e−
|x−x0|

2

4τ

≤ (4πτ)
n
2

(
1 +

ε

2
+
ε

4

)
+ e

(R+2)2

4
−R(ΣT )2

2 +
R+ 2

τ
e

(R+2)2

8
−R(ΣT )2

4

√
(4πτ)

n
2 2λ0,

where the first inequality uses that x0 ∈ BR−σ and so Bσ√τ (x0) ⊂ BR, and the last inequality is
(6.78) and (6.77). Since R(ΣT ) ≥ R ≥ R0, we can select R0 large so that the two terms on the
right sum to less than (4πτ)

n
2
ε
4 . This choice of R0 depends on ε, τ, n and λ0 as claimed. Then

∫

Σs0

e−
|x−x0|

2

4τ ≤ (4πτ)
n
2

(
1 +

3ε

4

)
+ (4πτ)

n
2
ε

4
= (4πτ)

n
2 ε.

Multiplying both sides by (4πτ)−
n
2 gives the result.
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Using the previous three lemmas, we will now assemble our first building block in the proof of
the extension step.

Proposition 6.32 (5.6). Given n and λ0, there exists σ ≥ 2 and δ > 0 such that the following
holds. Given τ ∈ (0, 1), there exists R0 = R0(n, λ0, τ) so that if Σs flows by the RMCF, λ(Σs) ≤ λ0,
R ∈ [R0, R(ΣT )], x0 ∈ BR−σ and

sup
ΣT+1∩Bσ√τ (x0)

|A|2 ≤ δ

τ
,

then for each ` ∈ N0, there is a constant C` = C`(n, `) such that the curvature bound

sup
Σs∩B√τ

3

(
1√
1−τ

x0

) |∇
`A|2 ≤ C`

τ `+1

holds for all s ∈ [T − 1− log(1− τ), T + 1− log(1− τ)].

Proof. Let Lemma 6.29 provide ε = ε(n, λ0), and let Lemma 6.31 provide R0 = R0(ε, n, λ0, τ) =

R0(n, λ0, τ) and σ = σ(n, ε, λ0) = σ(n, λ0). Select δ = δ(ε) = δ(n, λ0) such that

sup
Bσ
√
τ (x0)∩ΣT+1

|A|2 ≤ δ

τ
implies (4πτ)−

n
2

∫

ΣT+1

e−
|x−x0|

2

4τ ≤ 1 +
ε

2
. (6.83)

This is possible since small curvature near x0 implies almost-flatness, making the integral on the
right almost one. The left-hand side of (6.83) is satisfied by the hypotheses, so the right-hand
side holds; now Lemma 6.31 gives that if s0 ∈ [T − 1, T + 1], then

(4πτ)−
n
2

∫

Σs0

e−
|x−x0|

2

4τ ≤ 1 + ε.

By Lemma 6.29, it holds for each s ∈
[
s0 − log

(
1− 3τ

4

)
, s0 − log(1− τ)

]
that

sup

Σs∩B√τ
2

(
e

1
2 (s−s0)x0

) |A|2 ≤ C0

τ
,

where C0 = C0(n, λ0). Using this bound, we may now apply Lemma 6.30 with ρ =
√
τ

2 and θ = 2
3

to get that for all s ∈ [s0 − log
(
1− 8τ

9

)
, s0 − log(1− τ)] and ` ∈ N0,

sup

Σs∩B√τ
3

(
e

1
2 (s−s0)x0

) |∇`A|2 ≤ C`
τ `+1

, (6.84)

where C` = C`(n, `, C0) = C`(n, `, λ0). In particular, by selecting s = s0 − log(1 − τ) for each
s0 ∈ [T−1, T+1], we allow s to take every value in the interval [T−1−log(1−τ), T+1−log(1−τ)].
By (6.84) we get for each such s that

sup

Σs∩B√τ
3

(
e−

1
2 log(1−τ)x0

) |∇`A|2 = sup

Σs∩B√τ
3

(
e

1
2 (s−s0)x0

) |∇`A|2 ≤ C`
τ `+1

.

Since e−
1
2

log(1−τ) = 1√
1−τ , this proves the proposition.
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The second element in the proof of the extension step is a uniform stability lemma. For MCF, this
is stated as follows:

Lemma 6.33 (5.39). Given n, ε, K and ξ, there exist δ, θ > 0 such that if R >
√

2n and Mt is an
MCF with

(1) M−1 is (δ,R+ 2, C2,α)-close to a cylinder Γ ∈ Ck;

(2) ‖A‖C3(BR+2∩Mt)
≤ K for t ∈ [−1− ξ,−1 + ξ],

then for each t ∈ [−1− θ,−1 + θ], Mt is (ε,R,C2,α)-close to
√−tΓ.

See [CM15] for the proof. What we need is a variant of this lemma for RMCF. Since this is not a
direct rescaling of Lemma 6.33 and we could not locate a proof, we will give one here.

Lemma 6.34. Given n, K0, ζ, there exists η > 0 such that if R2 >
√

2n and Σs is a RMCF with

(1) Σs0 is (η,R2 + 2, C2,α)-close to a cylinder Γ ∈ Ck;

(2) ‖A‖C3(BR2+2∩Σs)
≤ K0 for s ∈ [s0 − ζ, s0 + ζ],

then for sufficiently small ρ > 0, there exists µ = µ(ρ) so that Σs0+ρ is (ε0, (1 + µ)R2, C
2,α)-close to

Γ.

Proof. The flow Mt =
√−tΣs, t = −es0−s defines an MCF with M−1 = Σs0 . By (1), M−1 is

(η,R2 + 2, C2,α)-close to Γ. Moreover, rescaling (2) gives ξ = ξ(ζ) such that ‖A‖C3(BR2+2∩Mt)
≤

2K0 for t ∈ [−1 − ξ,−1 + ξ] (the factor of 2 enters because the curvatures will be rescaled too
in a temporal neighbourhood of t = −1). Feeding into Lemma 6.33 the parameters R = R2,
ε = ε0/2, K = 2K0 and ξ, we get δ, θ > 0 such that if M−1 is (δ,R2 + 2, C2,α)-close to Γ, then
the conclusion of that lemma holds with the supplied parameters. So let η = δ, and we have that

• For each t ∈ [−1− θ,−1 + θ], Mt is
(
ε0
2 , R2, C

2,α
)
-close to

√−tΓ.

Since Mt =
√−tΣs, rescaling everything by a spatial factor of

√−t gives us that

• For each t ∈ [−1− θ,−1 + θ], Σs = Σs(t) is
(

ε0
2
√
−t ,

R2√
−t , C

2,α
)

-close to Γ.

If t ∈
(
−1,−1

4

)
, then 1√

−t = 1 + µ < 2 for some µ = µ(t) = µ(s) > 0. Thus the above statement
gives that in particular,

• For each t ∈
(
−1,min{−1 + θ,−1

4}
)
, Σs(t) is

(
ε0, (1 + µ)R2, C

2,α
)
-close to Γ.

Since s is increasing in t and s(−1) = s0, we can replace t ∈
(
−1,min{−1 + θ,−1

4}
)

in the above
statement with s ∈ (s0, s0 + ρ), where ρ > 0 is the value of s when t = min{−1 + θ,−1

4}. This
proves the lemma.

The third ingredient for the extension step is a mean value inequality for the F -functional, whose
proof is a plain computation and we omit. We only remark that a bound on |A| suffices rather
than bounds on higher derivatives (as the original paper suggests). This is evident from the proof,
specifically equation (5.37) in the paper.

Lemma 6.35 (5.32). Given n and C1, there is a constant C so that if Σs is an RMCF for s ∈ [s1, s2],
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β ∈ (0, s2−s12 ), and |A| ≤ C1 on Br+1 ∩ Σ for all s ∈ [s1, s2], then

max
s∈[s1+β,s2]

‖φ‖2L2(Br∩Σs)
≤ (C + 1/β)(F(Σs1)−F(Σs2)).

We will now prove Theorem 6.28 using the three ingredients on hand. To execute this properly,
we must carefully play off the constants provided in each part against one another and ensure
no circular dependencies arise.

Proof of Theorem 6.28. Let σ ≥ 2 and δ > 0 be given by Proposition 6.32, depending on n and
λ0. As δ can be taken small, we assume δ ≤ 1

2(1 − e−1/4) for later convenience. Observe that
if x0 ∈ BR−σ and τ ∈ (0, 1), then Bσ

√
τ (x0) ⊂ BR. Then since ΣT+1 is (εE , R, C

2,α)-close to
ΓT+1 ∈ Ck, we can find τ ∈ (0, 1) so that for all x0 ∈ BR−σ,

sup
ΣT+1∩Bσ√τ (x0)

|A|2 ≤ δ

τ
.

As the left-hand quantity is controlled using only εE (and perhaps n, λ0), this means τ is indepen-
dent of R and x0. Moreover, since any cylinder in Ck has |A|2 = 1

2 , we must have τ ≤ 2δ. We can
also shrink εE (depending on n) so that the left-hand quantity is bounded by 1, in turn implying
τ ≥ δ. By Proposition 6.32, there exist {C̃`}`∈N0 depending on n and ` so that

sup
Σs∩B√τ

3

(
1√
1−τ

x0

) |∇
`A|2 ≤ C̃`

τ `+1
(6.85)

for all s ∈ [T − 1 − log(1 − τ), T + 1 − log(1 − τ)] and x0 ∈ BR−σ. The fact that (6.85) holds
for all x0 ∈ BR−σ means that these curvature bounds hold on a ball B R−σ√

1−τ
∩ Σs for each s. As

R ≥ R1, setting R1 sufficiently large (depending on τ and σ) will give that R−σ√
1−τ > (1 + µ)R for

some µ > 0, so the curvature bounds hold on a multiplicatively larger ball. The fact that τ does
not depend on R is important here. In summary, (6.85) gives

sup
Σs∩B(1+µ)R

|∇`A| ≤
(

C̃`
τ `+1

)1/2

= C`, (6.86)

for all s ∈ [T−1−log(1−τ), T+1−log(1−τ)], where the last equality defines C`. As δ ≤ τ ≤ 2δ ≤
1− e−1/4, this time interval includes [T − 3

4 , T + 1− log(1− δ)], hence [T − 1
2 , T + 1] in particular.

Therefore, to prove claim (i) of the theorem, it remains to show that Σs is (ε0, (1+µ)R,C2,α)-close
to a cylinder in Ck for each s ∈ [T − 1

2 , T + 1]. We will do this now.

By (6.86), we have ‖A‖C3(BR∩Σs)
≤ K0 = C0 +C1 +C2 +C3 for all s ∈ [T − 3

4 , T +1− log(1−δ)].
Let s0 ∈ [T − 5

8 , T + 1] and apply Lemma 6.34 centred at Σs0 with parameters R2 = R − 2, K0,
and ζ = − log(1 − δ) < 1

8 . The η given by that lemma depends on n, K0 and ζ, which in our
case all depend on n and λ0. Thus, as long as εE < η, the lemma gives ρ < 1

8 and µ > 0 (both
independent of s0) such that Σs0+ρ is (ε0, (1 +µ)(R− 2), C2,α)-close to Γs0 . Trading for a smaller
µ, we get (ε0, (1 +µ)R,C2,α)-closeness of Σs0+ρ to Γs0 . But s0 ∈ [T − 5

8 , T + 1] was arbitrary and
ρ < 1

8 , so s0 + ρ can take any value between T − 1
2 and T + 1. The claim (i) follows.



80 Chapter 6. Uniqueness of Cylindrical Tangent Flows

For (ii), shrink µ slightly so that the bounds (6.86) actually hold on B(1+µ)R+1 ∩ Σs. Invoking
Lemma 6.35 with s1 = T − 3

4 , s2 = T + 1, r = (1 + µ)R and β = 1
4 , we get C > 0 such that

‖φ‖2L2(B(1+µ)R∩Σs)
≤ C(F(ΣT− 3

4
)−F(ΣT+1)) ≤ C(F(ΣT−1)−F(ΣT+1))

for all s ∈ [T − 1
2 , T + 1], where the last inequality is Lemma 3.24. This proves (ii).

6.5.3 Proof of Theorem 6.26

We are prepared to use the extension and improvement steps from the last two subsections to
prove the scale comparison theorem. For ease of viewing, let us state the precise versions of the
extension and improvement steps that will be used.

Theorem 6.36 (Extension step). Given n and λ0, there exist εE , R1, C, {C`}`∈N0 and µ > 0 such
that the following holds. If Σs flows by RMCF and λ(Σs) ≤ λ0, and there exists R ∈ [R1, R(ΣT )]

such that for all s ∈ [T − 1
2 , T + 1]:

(IR) : Σs is (εE , R, C
2,α)-close to a cylinder in Ck (depending on s),

then for all s ∈ [T − 1
2 , T + 1]:

(E(1+µ)R) :





(1 + µ)R ≤ rε0,`,C`(Σs) for each ` ∈ N0, and

‖φ‖2L2(B(1+µ)R∩Σs)
≤ C(F(ΣT−1)−F(ΣT+1)).

The version of the improvement step we will use follows from applying Theorem 6.27 to each
timeslice of an RMCF, using R∗ = R(ΣT ), and replacing K with a sequence of numbers {C`}`∈N0 .

Theorem 6.37 (Improvement step). Given n, λ0, εE , C, {C`}`∈N0 and θ ∈ (0, 1), there exists R2

such that the following holds. If Σs flows by RMCF and λ(Σs) ≤ λ0, and there existsR ∈ [R2, R(ΣT )]

such that for all s ∈ [T − 1
2 , T + 1]:

(ER) :

{
R ≤ rε0,`,C`(Σs) for each ` ∈ N0, and

‖φ‖2L2(BR∩Σs)
≤ C(F(ΣT−1)−F(ΣT+1)),

then for all s ∈ [T − 1
2 , T + 1]:

(I(1−θ)R) : Σs is (εE , (1− θ)R,C2,α)-close to a cylinder in Ck.

Remark 6.38. With these abbreviations, Theorem 6.26 essentially says that

(IR) for all s ∈ [T − 1

2
, T + 1] implies (E(1+µ)R(ΣT )) for s = T.

Proof of Theorem 6.26. Let εE , R1, µ,K and {C`}`∈N0 be provided by the extension step, depend-
ing on n, λ0. By the extension step, (E(1+µ)R) holds for each s ∈ [T − 1

2 , T + 1]. Feeding
in n, λ0, εE , C, {C`}`∈N0 and θ = µ/2 into the improvement step, we obtain R2 such that if
(1 + µ)R ≥ R2, then (I(1−θ)(1+µ)R) holds for each s ∈ [T − 1

2 , T + 1]. Since R2 does not depend
on R1, we may take R1 large to make sure this holds.

Applying the extension step at scale (1−θ)(1+µ)R > R, we get that (E(1+µ)2(1−θ)R) holds for each
s ∈ [T − 1

2 , T + 1]. We may continue alternating between extension and improvement as long as
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we are beneath the shrinker scale R(ΣT ), so the final iteration of the improvement step gives that
(IR(ΣT )) holds for each s ∈ [T− 1

2 , T+1]. The point is that the constants εE , C, {C`}`∈N0 , µ,R1, θ, R2

do not change between iterations, because their dependencies all trace back to n and λ0 which are
fixed. Nonetheless, at scale R(ΣT ) we apply the extension step one last time to get (E(1+µ)R(ΣT ))

for each s ∈ [T − 1
2 , T + 1]. Choosing s = T gives the theorem.

6.6 Proof of Theorem 6.1

The proof of uniqueness of cylindrical tangent flows is now in sight. To begin this home stretch,
we take the long-awaited step of turning the gradient Łojasiewicz inequality into the discrete
differential inequality (6.2).

Theorem 6.39 (6.1). Given n and λ0, there exist R0, R1, εE , C and δ ∈ (0, 1) so that if Σs is
an RMCF with λ(Σs) ≤ λ0, R(ΣT ) ≥ R0, and Σs is (εE , R1, C

2,α)-close to a cylinder for each
s ∈ [T − 1

2 , T + 1], then

(F(ΣT )−F(Ck)) ≤ C(F(ΣT−1)−F(ΣT+1))
1+δ

2 .

Proof. LetR1 and εE be those of Theorem 6.26. Then we get positive constants µ,C and {C`}`∈N0

depending on n and λ0 such that

• (1 + µ)R(ΣT ) ≤ rε0,`,C`(ΣT ) for each ` ∈ N0, and

• ‖φ‖2L2(B(1+µ)R(ΣT )∩ΣT ) ≤ CFT ,

where we have written FT = F(ΣT−1)−F(ΣT+1) to simplify notation.

Select µ̃ < µ so that (1 + µ)R(ΣT ) > (1 + µ̃)R(ΣT ) + 1. Apply Theorem 6.8 to ΣT at scale
R = (1 + µ̃)R(ΣT ) + 1 ≤ rε0,`,C`(ΣT ). This gives that for any β ∈ [0, 1) and ` ≥ `0,

|F(ΣT )−F(Ck)| ≤ CRρ
{
‖φ‖d`,n

3+β
2+2β

L2(BR∩ΣT )
+ e
−d`,n

(
3+β
2+2β

)
R2

4 + e−
(3+β)(R−1)2

16

}
, (6.87)

where C = C(n, λ0, `, C`) = C(n, λ0, `), ρ = ρ(n), and d`,n ∈ (0, 1) has lim`→∞ d`,n = 1. This
holds as long as R ≥ R0(n, λ0, `), but we know this is true since R(ΣT ) ≥ R0.

We will choose β and ` large to bound each term in (6.87) by a power greater than 1
2 of FT .

Once we do this, the C and R0 above will depend only on n and λ0 as claimed. For the last term
in (6.87), note that (R− 1)2 ≥ (1 + µ̃)R(ΣT )2, so

e−
(3+β)(R−1)2

16 ≤ e−
(3+β)(1+µ̃)

8

R(ΣT )2

2 = F
3+β

4
1+µ̃

2
T ,

where the equality is the definition of R(ΣT ). Now choose β′ ∈ [0, 1) to make the exponent on
the right equal to 1+δ

2 for some δ > 0. To mitigate the Rρ prefactor, choose β > β′ so that

Rρe−
(3+β)(R−1)2

16 = RρF
1+δ

2
T e−

(β−β′)(R−1)2

16 ≤ CF
1+δ

2
T , (6.88)

for some C = C(ρ) = C(n). Next, choose `′ large so that

d`′,n

(
3 + β

2 + 2β

)
≥ 1 + δ,
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possibly choosing a smaller δ. For the second term in (6.87), since R > R(ΣT ), we have

e
−d`′,n

(
3+β
2+2β

)
R2

4 ≤ e− 1+δ
2

R(ΣT )2

2 = F
1+δ

2
T . (6.89)

Finally, for the first term, since R < (1 + µ)R(ΣT ) we have

‖φ‖d`′,n
3+β
2+2β

L2(BR)
≤
{
CFT

} 1
2
d`′,n

(
3+β
2+2β

)
≤ CF

1+δ
2

T , (6.90)

where C = C(n, λ0). Similarly to (6.88), we can pick ` > `′ to absorb the Rρ prefactor as
d`,n > d`′,n. Thus, (6.89) and (6.90) become

Rρe
−d`,n

(
3+β
2+2β

)
R2

4 ≤ CF
1+δ

2
T ,

Rρ ‖φ‖d`,n
3+β
2+2β

L2(BR)
≤ CF

1+δ
2

T .

Combining these with (6.88), the right-hand side of (6.87) is bounded above by CF
1+δ

2
T .

The following lemma captures the importance of the above theorem: it forces a certain finiteness
to the ‘length’ of an RMCF. We will skip the proof, which is elementary but inevitably cumbersome.

Lemma 6.40 (6.9). If f : [0,∞) → [0,∞) is a nonincreasing function, and there exist θ ∈ (1
2 , 1)

and C > 0 so that for all sufficiently large t we have

f(t) ≤ C(f(t− 1)− f(t+ 1))θ,

then
∞∑

j=1

(f(j)− f(j + 1))
1
2 <∞.

The last lemma we need shows that the C2,α-closeness criterion of Theorem 6.39 holds for all
large enough times in an RMCF, so that Lemma 6.40 becomes applicable.

Lemma 6.41. Let Σs be an RMCF with a tangent flow in Ck. Given ε,R > 0, there exists T <∞ so
that

• For all t ≥ T , there is a cylinder Γt ∈ Ck such that Σs is (ε,R,C2,α)-close to Γt for each
s ∈ [t− 1, t+ 1].

Proof. If not, then there is a sequence of times ti →∞ such that

(∗) For each i, there is no cylinder in Ck which Σs is (ε,R,C2,α)-close to for all s ∈ [ti−1, ti+1].

By the compactness theorem for rescaled Brakke flows, a subsequence of the RMCFs Σ̃(i) = {Σs :

s ∈ [ti − 1, ti + 1]} converges to a rescaled Brakke flow Γ̃. By Theorem 6.3 and Theorem 4.1, Γ̃

must be the rescaled Brakke flow of a unit multiplicity smooth cylinder in Ck, which is simply
a stationary RMCF (Lemma 3.21). By Brakke’s regularity theorem [Bra78], the convergence
Σ̃(i) → Γ̃ is smooth on compact subsets of Rn+1 × R. This contradicts (∗).



6.6. Proof of Theorem 6.1 83

Proof of Theorem 6.1: uniqueness of cylindrical tangent flows. Let Σs be an RMCF of compact, em-
bedded hypersurfaces in Rn+1, and suppose Σs has a tangent flow in Ck. Let Theorem 6.39
provide εE , R0 and R1. By Lemma 6.41, there exists T <∞ so that

• For all t ≥ T , there is a cylinder Γt ∈ Ck such that Σs is (εE , R1, C
2,α)-close to Γt for each

s ∈ [t− 1, t+ 1].

Note that limt→∞R(Σt) = ∞ by the monotonicity of F (Lemma 3.24) and the definition of
R(Σt). Thus, we may assume R(Σt) ≥ R0 for all t ≥ T . Applying Theorem 6.39 then Lemma
6.40 yields

∞∑

j=1

(F(Σj)−F(Σj+1))
1
2 <∞.

Using this, the Cauchy–Schwarz inequality ‖φ‖2L1(Σs)
≤ (4π)

n
2F(Σs) ‖φ‖2L2(Σs)

, and the mono-
tonicity of F , we compute

∫ ∞

1
‖φ‖L1(Σs)

ds ≤
∞∑

j=1

∫ j+1

j
(4π)

n
4

√
F(Σs) ‖φ‖L2(Σs)

ds

≤ (4π)
n
4

√
F(Σ1)

∞∑

j=1

(F(Σj)−F(Σj+1))
1
2 <∞.

From this and Lemma B.5, it follows that the total area swept out by the RMCF within BR1 ,

weighted by e−
|x|2

4 , is finite. Namely, one applies Lemma B.5 to the time intervals [T − 1, T + 1],
[T + 1, T + 3], and so on (laying this out in full would unfortunately require excessive notation).
But Theorem 6.3 says that BR1 ∩Σs subconverges smoothly to a cylinder along every sequence of
times, so the only way to sweep out a finite area is for BR1 ∩Σs to converge to a unique cylinder
as s→∞. Repeating this at all scales R > R1 gives the uniqueness.



Chapter 7

Recent Progress and Research
Directions

In this chapter, we outline some developments which stem from, or are closely related to, the
results presented in this thesis. However, we begin with a retrospective note explaining why we
have already proved uniqueness of tangent flows not only for mean convex MCFs, but for ‘most’
MCFs.

7.1 Generic mean curvature flow

Recall from §4.1 that a shrinker with nonpositive definite stability operator L locally minimises
the F -functional among nearby hypersurfaces. In [CM12], Colding and Minicozzi used this to
arrive at the following insight. Since RMCF is the negative gradient flow of F , shrinkers that
are stable in this sense are tangent flows that cannot be perturbed away by varying the initial
conditions, and therefore represent singularities of a generic MCF. Hence, if we understand the
stable shrinkers, then we understand the singularities of ‘most’ MCFs.

In practice, one uses a slightly different notion of stability called entropy-stability to quotient out
by invariances of MCF under symmetries like translation, rotations and parabolic dilations. An
entropy-stable shrinker is one that locally minimises the entropy functional defined in (6.1). The
main result of [CM12] is a classification of entropy-stable shrinkers. Theorem 4.1 is a key step in
achieving this, and the final classification is in fact the same:

Theorem 7.1 ([CM12]). Every smooth, embedded, entropy-stable shrinker in Rn+1 with polynomial
volume growth is Sk√

2k
× Rn−k for some k ∈ {0, . . . , n}.

This shows that a generic MCF can only have the simplest shrinkers as its tangent flows, whereas
the exotic shrinkers, whilst abundant in numbers, only arise as tangent flows in very special cases.
Better still, since we now know that all tangent flows of the type Sk√

2k
× Rn−k are unique, we

conclude with the following.

Corollary 7.2. Uniqueness of tangent flows holds for all generic mean curvature flows.

84
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7.2 More uniqueness of tangent flows

7.2.1 Uniqueness of asymptotically conical tangent flows

Even though Sk√
2k
× Rn−k are the only generic singularities, other singularities are still worth

studying. Perhaps the next most important class of shrinkers are the asymptotically conical ones.
Wang [Wan16] showed that all embedded noncompact shrinkers in R3 are asymptotically cylindri-
cal or conical. Moreover, asymptotically conical shrinkers in R3 have been explicitly constructed
[Ngu14,KKM18]. It turns out, as recently proved by Chodosh and Schulze [CS21], that these are
also unique (in all dimensions):

Theorem 7.3 ([CS21]). If a unit multiplicity, asymptotically conical shrinker in Rn+1 arises as a
tangent flow of a compact, embedded MCF, then it is the unique tangent flow at that point.

Despite the noncompactness, this is proved by a Łojasiewicz-type inequality which, like Theorem
5.3, comes from reducing to the finite-dimensional case. It follows from this, [Wan16], and the
classification and uniqueness of generic singularities that for a compact embedded MCF in R3,
all unit multiplicity tangent flows are unique.

7.2.2 Uniqueness in high codimension mean curvature flow

High codimension MCF is the MCF of n-dimensional submanifolds of Rn+k, k ≥ 2. This is defined
also by (3.1) but the right-hand side is replaced by the mean curvature vector −H. The main
difficulty is the nontriviality of the normal bundle, which makes the second fundamental form
(now vector-valued) very intricate with a complicated evolution equation. This causes properties
like the avoidance principle and preservation of embeddedness to fail in high codimension.
However, the blowup procedure and the notion of a tangent flow manage to survive. See, e.g.
[Bak] for an introduction to high codimension MCF.

We can therefore study uniqueness of tangent flows in high codimension. To this end, Andrews
and Baker [AB10] showed that under suitably pinched curvature conditions, all tangent flows are
spheres and are therefore unique (this is similar to Huisken’s classic result [Hui84]). Uniqueness
of compact tangent flows also holds true in high codimension, and is (quite remarkably) proved by
reproducing §5 almost verbatim. Colding and Minicozzi also generalised uniqueness of cylindrical
tangent flows to high codimension [CM19b], but there were additional complications that needed
entirely new arguments to surmount.1

It would be interesting to extend the notion of generic MCF to high codimension. This would
create a meaningful intermediate goal to prove uniqueness of tangent flows for generic MCFs in
high codimension, just as what was done in codimension one. To our knowledge, the closest to a
genericity result in high codimension is that of Andrews, Li and Wei [ALW14]. They showed that
the entropy-stable shrinkers in high codimension are also spheres, cylinders and planes, but only
under an artificial ‘parallel principal normal’ condition.

1In unit codimension, Lemma 6.18 depends on the relations (2.2) which are specific to hypersurfaces.
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7.2.3 More Łojasiewicz inequalities

The quantity τ = A
H played a prominent role in the proof of the Łojasiewicz inequalities in §6.

However, the techniques used there are hard to generalise to shrinkers whereH possibly vanishes,
as τ would not be globally defined. This motivates the development of more widely applicable
methods to prove Łojasiewicz inequalities for shrinkers. We are aware of the recent work of Zhu
[Zhu20,Zhu21] and Sun–Zhu [SZ20] where Łojasiewicz inequalities were proved, respectively,
for generalised cylindrical shrinkers (including immersed ones) and product shrinkers of the
form Sk1√

2k1
×Sk2√

2k2
. The approach used in these papers is a perturbative method based on Taylor

expansion of the quantity φ = −H + 〈x,n〉
2 , which in principle could be done for any shrinker. In

[Zhu20], this led to an alternative proof of Theorem 6.1.

7.3 Applications – understanding the singular set

7.3.1 Structure and regularity of the singular set

We have seen that different solutions to MCF can have considerably dissimilar singular sets, e.g.
Figure 1.1. It seems imaginable that singular sets of MCFs can be as wild as we like, in terms
of dimension and regularity. However, Colding and Minicozzi proved that for generic MCFs (i.e.
where every tangent flow is Sk√

2k
× Rn−k), the singular set must be well-behaved:

Theorem 7.4 ([CM16a]). For a compact embedded generic MCF in Rn+1, the singular set S is
contained in finitely many compact embedded C1 submanifolds each of dimension (n− 1) together
with a set of dimension at most (n− 2).

We will not go into how this is proved other than mentioning that it uses the uniqueness result
of Corollary 7.2. This is quite surprising since uniqueness of tangent flows is a statement about
one singular point, whereas Theorem 7.4 is a claim about S globally.2 The exact statement in
[CM16a] is even stronger than this; it very precisely describes the structure of S.

Theorem 7.4 has a striking corollary. To understand this, we need to mention that Brakke flow
has a built-in capability to flow past singularities. In Brakke flow, a smooth hypersurface remains
smooth till the first singular time (it coincides with MCF), but afterwards there are usually in-
tractable changes in topology and regularity. However, things are controllable in low dimensions:

Corollary 7.5 ([CM16a]). For a generic MCF in R3 or R4 (where the Brakke flow is used to flow
past singularities), almost every timeslice is a smooth hypersurface, and any connected subset of the
space-time singular set is completely contained in a timeslice.

Aside from Brakke flow, there are other weak formulations of MCF that admit a mechanism
of flowing past singularities. Some of these include the level-set flow, the viscosity approach
and the shadow flow; see [ACGL20, §6.9] for a discussion as well as the references therein. A
contentious issue is deciding which formulation is the best; we would prefer one with a high
degree of regularity and generality, and perhaps one that is in a way canonically associated to
smooth MCF. Results like Theorem 7.4 and Corollary 7.5 could be used to settle this debate, or at

2Between these extremes lies the result of [CIM15], which says that in a neighbourhood of a point where there is
a cylindrical tangent flow, all blowups are cylindrical. Theorem 6.3 is a special case of this.
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least provide a case for using certain weak formulations over others. It turns out that uniqueness
of tangent flows also has regularity implications for the level-set flow [CM16b,CM18].

7.3.2 Mean curvature flow with surgery

Under MCF with surgery, a hypersurface evolves by MCF until a singularity is imminent. One
then stops the flow, performs surgery on the hypersurface to avert the singularity (see Figure
7.1), then continues the flow. This is repeated until the hypersurface is in a desired form, typically
a union of (Sn)’s and (Sn−1 × S1)’s. The motivation for this comes from the Ricci flow, where
surgery procedures were vital to Perelman’s proof of the Poincaré and geometrisation conjectures.

Figure 7.1: Performing surgery on the hypersurface to remove a region where a
singularity would otherwise develop under MCF. Adapted from [ACGL20].

MCF with surgery is a highly ambitious task which has only succeeded in a few cases so far,
most notably for 2-convex hypersurfaces in Rn+1 (with n ≥ 3) [HS09] and for mean convex
hypersurfaces in R3 [BH16,HK17]. See also [Ngu20] for some progress in high codimension. A
major difficulty is understanding what the singular set looks like so that we know exactly where
surgery needs to be done; results like Theorem 7.4 and Corollary 7.5 could be valuable here. In
addition, uniqueness of tangent flows tells us that singularities in MCF (morally) form at the rate
of magnification, i.e. the RMCF rescaling rate. This could play a role in deciding on the correct
time to pause the flow and undertake the surgery.



Appendix A

The Euler–Lagrange Functional and its
Linearisation

In this appendix, (M, g) is a compact Riemannian n-manifold with Levi-Civita connection ∇. We
first derive expressions for the Euler–Lagrange functional of an integral map C1(M)→ R and its
linearisation. We then prove some estimates that are used in the main text.

A.1 Existence and uniqueness of the Euler–Lagrange functional

Consider a functional E : C1(M)→ R of the form

E(u) =

∫

M
E(p, u(p),∇u(p)),

where E = E(p, q, z) is a smooth function of p ∈ M , q ∈ R and z ∈ TpM , and the integration
takes place with respect to the Riemannian measure µ associated to (M, g).

Recall that the Euler–Lagrange functionalM : C2(M)→ C0(M) is defined by requiring

−〈Mu, v〉L2 =
d

ds

∣∣∣
s=0
E(u+ sv), ∀u, v ∈ C2(M).

Let us compute this explicitly in local coordinates. Choosing an orthonormal tangent frame
{∂i}ni=1 around a point p, any u ∈ C2(M) is locally written ∇u = (∇iu)∂i. Write

E(p, u(p),∇u(p)) = Ẽ(p, u(p),∇1u(p), . . . ,∇nu(p)),

where Ẽ is smooth. Subsequently we abbreviate (∇1u(p), . . . ,∇nu(p)) as ∇ũ, and suppress p-
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dependences. Subscripts on functions denote partial derivatives. Then

d

ds

∣∣∣
s=0
E(u+ sv) =

∫

M

d

ds

∣∣∣
s=0

Ẽ(p, u+ sv,∇ũ+ s∇ṽ)

=

∫

M
vẼq(p, u,∇ũ) + (∇iṽ)Ẽzi(p, u,∇ũ)

=

∫

M

{
n∑

i=1

(
∇i(vẼzi(p, u,∇ũ))− v∇iẼzi(p, u,∇ũ)

)
+ vẼq(p, u,∇ũ)

}

=

∫

M
v

{
−

n∑

i=1

(
Ẽzi(p, u,∇ũ) +∇iẼzi(p, u,∇ũ)

)
+ Ẽq(p, u,∇ũ)

}

This shows thatM(u) ∈ C0(M) is given locally by

M(u)(p) =
n∑

i=1

(
∇iẼzi(p, u,∇ũ) + Ẽzi(p, u,∇ũ)

)
− Ẽq(p, u,∇ũ)

=

n∑

i,j=1

Ẽzizj (p, u,∇ũ)∇i∇ju+ f(p, u,∇ũ),

(A.1)

where f(p, q, z) is a smooth real-valued function. Note that this is quasilinear: only the depen-
dence on second-order partial derivatives of u is necessarily linear. The linearisation ofM at u is
a linear map Lu : C2(M)→ C0(M) defined by

Luw =
d

ds

∣∣∣
s=0
M(u+ sw) =

n∑

i,j=1

Ẽzizj (p, u,∇ũ)∇i∇jw +R, (A.2)

where R has linear dependence on w̃, ∇w̃. In (2.12), we showed that Lu is symmetric. Now if
we impose that for some C > 0

d2

ds2

∣∣∣
s=0

E(p, 0, sz) ≥ C|z|2, ∀z ∈ TpM,

then we can check that L = L0 is uniformly elliptic. Indeed, let ξ = ξiε
i ∈ T ∗pM , where {εi}ni=1

is the dual coframe of {∂i}ni=1. Then from (A.2) we have
n∑

i,j=1

Ẽzizj (p, 0, 0)ξiξj =
d2

ds2

∣∣∣
s=0

Ẽ(p, 0, sξ1, . . . , sξn) =
d2

ds2

∣∣∣
s=0

E(p, 0, sξ) ≥ C|ξ|2,

which is the definition of uniform ellipticity.

A.2 Some estimates

In this section, we allowM : C2(M)→ C0(M) to be any map which is locally of the form

M(u)(p) = Φij(p, u(p),∇u(p))uij(p) + f(p, u(p),∇u(p)),

where Φij and f are smooth functions of (p, q, z) where p ∈ M , q ∈ R and z ∈ TpM , and
uij means ∇i∇ju. In particular, this is the form ofM in the previous section (see (A.1)). The
linearisation ofM at u is

Luv =
d

ds

∣∣∣
s=0
M(u+ sv) = uij

(
Φij
q v + Φij

zαvα
)

+ Φijvij + fqv + fzβvβ, (A.3)
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where f , Φ and its derivatives are evaluated at (p, u(p),∇u(p)).

For the next lemma, we omit the proof which is a simple calculation using the fundamental
theorem of calculus and the chain rule.

Lemma A.1 ([CM19a]). If f is a C1 function of (p, q, z), and u, v ∈ C1(M), then

|f(p, u(p),∇u(p))− f(p, v(p),∇v(p))| ≤ Cf (|u(p)− v(p)|+ |∇u(p)−∇v(p)|),
where Cf = Cf (p) = sup{|fq|+ |fyα | | |q|+ |z| ≤ ‖u‖C1 + ‖v‖C1}.

Proposition A.2 ([CM15]). The linearisation Lu deviates at most quadratically from M in the
sense that at each point p ∈M , we have for all u, v ∈ C2(M) that

M(u+ v)−M(u) = Luv +R(u, v, p),

where the remainder term R(u, v, p) satisfies (at p ∈M)

|R| ≤ C1(|v|+ |∇v|)2 + C2(|v|+ |∇v|)|∇2v|,
C1 = |Φij

q |+ |Φij
zα |+ CΦij ,

C2 = |uij |CΦijq
+ |uij |CΦijzα

+ Cfq + Cfzβ .

Here the suprema defining the C terms are taken over |q|+ |z| ≤ 2 ‖u‖C1 + ‖v‖C1 .

Proof. Using (A.3) and Lemma A.1 we compute (at p)

|Lu+wv − Luv| = |(uij + wij)
(
Φij
q (p, u+ w,∇u+∇w)v + Φij

zα(p, u+ w,∇u+∇w)vα
)

− uij(Φij
q (p, u,∇u)v + Φij

zα(p, u,∇u)vα)

+ Φij(p, u+ w,∇u+∇w)vij − Φij(p, u,∇u)vij

+ fq(p, u+ w,∇u+∇w)v − fq(p, u,∇u)v

+ fzβ (p, u+ w,∇u+∇w)vβ − fzβ (p, u,∇u)vβ|
≤ |uij |CΦijq

(|w|+ |∇w|)|v|+ |uij |CΦijzα
(|w|+ |∇w|)|vα|

+ |wij ||Φij
q ||v|+ |wij ||Φij

zα ||vα|+ CΦij (|w|+ |∇w|)|vij |
+ Cfq(|w|+ |∇w|)|v|+ Cfzβ (|w|+ |∇w|)|vβ|

≤
{
|Φij
q |+ |Φij

zα |
}

(|v|+ |∇v|)|∇2w|+ CΦij (|w|+ |∇w|)|∇2v|
+
{
|uij |CΦijq

+ |uij |CΦijzα
+ Cfq + Cfzβ

}
(|w|+ |∇w|)(|v|+ |∇v|),

(A.4)

where the suprema defining the C terms are taken over |q| + |z| ≤ 2 ‖u‖C1 + ‖w‖C1 over the
point p. Using the fundamental theorem of calculus, we have (again at p) that

M(u+ v)−M(u) =

∫ 1

0

(
d

dt

∣∣∣
t=0
M(u+ tv)

)
dt =

∫ 1

0
Lu+tvv dt = Luv +R, (A.5)

where R =
∫ 1

0 (Lu+tv − Luv) dt. Using (A.4) we bound |R| by

|R| ≤ sup
t∈[0,1]

|Lu+tvv − Luv|

≤
{
|Φij
q |+ |Φij

zα |+ CΦij
}

(|v|+ |∇v|)|∇2v|
+
{
|uij |CΦijq

+ |uij |CΦijzα
+ Cfq + Cfzβ

}
(|v|+ |∇v|)2,

which is the proposition.
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In the main text, we use the following variation of the above result:

Proposition A.3. Suppose ‖u‖C2 , ‖v‖C2 < 1, and let L = L0. Then

Mu−Mv = L(u− v) + aij(u− v)ij + bα(u− v)α + c(u− v),

where aij , bα and c are functions of p ∈M with

sup
M

(|aij |+ |bα|+ |c|) ≤ C(‖u‖C2 + ‖v‖C2),

and C depends only on n and the form ofM.

Proof. From (A.5), we have at each point p ∈M that

Mu−Mv = Lv(u− v) +R = L(u− v) + (Lv(u− v)− L(u− v)) +R. (A.6)

We will bound Lv(u− v)− L(u− v) and R. From Proposition A.2, we already know that

|R| ≤ C1(|u− v|+ |∇(u− v)|)2 + C2(|u− v|+ |∇(u− v)|)|∇2(u− v)|.

By inspecting the forms of C1, C2, we have C1 + C2 ≤ C(1 + ‖v‖C2) ≤ C, as ‖v‖C2 < 1. Thus

|R| ≤ C(|u− v|+ |∇(u− v)|)(|u− v|+ |∇(u− v)|+ |∇2(u− v)|)
≤ C(‖u‖C1 + ‖v‖C1)(|u− v|+ |∇(u− v)|+ |∇2(u− v)|).

(A.7)

On the other hand, using (A.4) we have

|Lv(u− v)− L(u− v)| ≤ C(|u− v|+ |∇(u− v)|)|∇2v|+ C(|v|+ |∇v|)|∇2(u− v)|
+ C(|v|+ |∇v|)(|u− v|+ |∇(u− v)|)
≤ C ‖v‖C2 (|u− v|+ |∇(u− v)|+ |∇2(u− v)|).

(A.8)

By (A.7) and (A.8) we see that we can write

Lv(u− v)− L(u− v) +R = aij(u− v)ij + bα(u− v)α + c(u− v),

where aij , bα and c are functions of p ∈M with

sup
M

(|aij |+ |bα|+ |c|) ≤ C(‖u‖C2 + ‖v‖C2).

Together with (A.6), this gives the proposition.



Appendix B

Graphs Over Hypersurfaces

This appendix gathers some calculations for hypersurfaces written as normal graphs over an em-
bedded hypersurface Σ ⊂ Rn+1. We follow Appendix A of [CM15] and Appendix A of [CM19a],
although some of our calculations do not appear there (but are needed in the main text).

Let Σ have normal injectivity radius δ. Then every smooth function u : Σ → R with ‖u‖C0 ≤ δ

gives rise to a hypersurface Σu = graphΣ(u). We use x and y to denote generic points on Σ and
Σu respectively. Their correspondence is given by y = x+ u(x)n(x) where n is the normal to Σ.

B.1 Key graphical quantities

For x ∈ Σ, let nu(x) be the unit normal to Σu at y = x+ u(x)n(x), that is nu(x) = nΣu(y). The
following is Lemma A.3 and Corollary A.30 of [CM15], and expresses the following functions on
Σ in terms of u.

• The mean curvature Hu(x) on Σu at x+ u(x)n(x), that is Hu(x) = HΣu(y);

• The relative volume element νu(x) defined by requiring that
∫

Σu
f(y) =

∫
Σ f(y)νu(x) for

all test functions f : Σu → R;

• The support function ηu(x) = 〈y,nu(x)〉;

• The speed function wu(x) = 〈n(x),nu(x)〉−1.

Lemma B.1. There are functions w, ν and η of (x, q, z) ∈ Σ×R×TxΣ which are smooth for |q| < δ

such that

wu(x) = w(x, u(x),∇u(x)), νu(x) = ν(x, u(x),∇u(x)), ηu(x) = η(x, u(x),∇u(x)).

Writing B(x, q) = Id − qA(x) where A is the matrix of the second fundamental form for Σ at x,
these functions are given by

w(x, q, z) =
√

1 + |B(x, q)−1(z)|2,
ν(x, q, z) = w(x, q, z) detB(x, q),

η(x, q, z) =
〈x,n(x)〉+ q −

〈
x,B(x, q)−1(z)

〉

w(x, q, z)
.
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Secondly, the following table gathers some basic values and derivatives of these functions.

Function Value at (x, 0, 0) ∂q at (x, 0, 0) ∂zj at (x, 0, 0)

w 1 0 0

ν 1 H(x) 0

η 〈x,n(x)〉 1 −xj
∂ziν 0 0 δij
∂qν H(x) H2(x)− |A|2(x) 0

Finally, the function Hu is given by

Hu(x) =
w

ν

{
∂qν − ∂xi∂ziν − (∂q∂ziν)∇iu(x)− (∂zi∂zjν)∇i∇ju(x)

}
,

where w, ν and their derivatives are evaluated at (x, u(x),∇u(x)).

B.2 The Euler–Lagrange functional of FΣ

Recall from §4.1 that FΣ : C1(Σ) ∩Bδ(0)→ R is given by

FΣ(u) = (4π)−
n
2

∫

Σu

e−
|y|2

4 = (4π)−
n
2

∫

Σ
e−
|x+u(x)n(x)|2

4 νu(x), (B.1)

where the second equality is the definition of νu. The small C1 norm ensures that νu ≈ 1 is
bounded and so by (B.1),FΣ(u) is close to FΣ(0). We will compute the Euler–Lagrange functional
of FΣ with respect to the Riemannian and Gaussian measures on Σ. Denote these byMΣ and
Mν

Σ respectively. Both are operators from C2(Σ) ∩Bδ(0) to C0(Σ), defined by requiring that

−
∫

Σ
vMΣ(u) =

d

ds

∣∣∣
s=0
FΣ(u+ sv) = −(4π)−

n
2

∫

Σ
vMν

Σ(u)e−
|x|2

4 .

Proposition B.2. Explicit formulae forMΣ andMν
Σ are given by

MΣ(u) = −(4π)−
n
2

(
Hu −

〈x+ u(x)n(x),nu〉
2

)
〈n,nu〉 e−

|x+u(x)n(x)|2
4 , (B.2)

Mν
Σ(u) = −

(
Hu −

1

2
ηu

)
(detB(x, u))e−

u2+2u〈x,n〉
4 . (B.3)

Proof. Let u, v ∈ C2(Σ) ∩Bδ(0). First note that by a geometric argument,

d

ds

∣∣∣
s=0
FΣ(u+ sv) =

d

ds

∣∣∣
s=0
FΣu(s

〈
v∗n∗,n

Σu
〉
),

where v∗ : Σu → R is given by v∗(y) = v(x), similarly for n∗, and nΣu is the normal to Σu.
Repeating the computation (4.3) then pulling back from Σu to Σ, we get

d

ds

∣∣∣
s=0
FΣ(u+ sv) = (4π)−

n
2

∫

Σu

(
HΣu −

〈
y,nΣu

〉

2

)
v∗
〈
n∗,n

Σu
〉
e−
|y|2

4

= (4π)−
n
2

∫

Σ

(
Hu(x)− 〈x+ u(x)n(x),nu〉

2

)
v(x) 〈n,nu〉 e−

|y|2
4 νu(x)

(B.4)
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which gives (B.2). Note that Lemma B.1 gives 〈n,nu〉 νu = νu
wu

= detB(x, u). Also, |x+u(x)n(x)|2 =

|x|2 + u2 + 2u 〈x,n〉 and 〈x+ u(x)n(x),nu〉 = ηu by definition. Using these in (B.4), we have

d

ds

∣∣∣
s=0
FΣ(u+ sv) = (4π)−

n
2

∫

Σ

(
Hu(x)− 1

2
ηu(x)

)
v(x)(detB(x, u))e−

u2+2u〈x,n〉
4 e−

|x|2
4 ,

from which (B.3) follows.

Proof of Proposition 4.5. The L2(ν) Euler–Lagrange functional from the statement of the propo-
sition refers toMν

Σ defined above. By Proposition B.2, we have

d

dε

∣∣∣
ε=0
Mν

Σ(εu) = − d

dε

∣∣∣
ε=0

(
Hεu −

1

2
ηεu

)
(detB(x, εu))e−

ε2u2+2εu〈x,n〉
4 . (B.5)

Since η0(x) = 〈x,n〉 (see the table in Lemma B.1) and Σ is a shrinker by assumption, we have
H0 − 1

2η0 = 0. So the only nonzero term in (B.5) is the term where we differentiate Hεu − 1
2ηεu.

By the evolution equations for H and n in Lemma 3.12 (with f = u there), we compute

d

dε

∣∣∣
ε=0
Mν

Σ(εu) = −(detB(x, 0))
d

dε

∣∣∣
ε=0

(
Hεu −

1

2
ηεu

)

= − d

dε

∣∣∣
ε=0

(
Hεu −

1

2
〈x+ εun,nεu〉

)

= −
(
−∆u− |A|2u− 1

2
〈un,n〉+

1

2
〈x,∇u〉

)

= Lu.

(B.6)

That is, L is the linearisation ofMν
Σ at zero, which is the first claim of the proposition. For the

second claim, let ψ ∈ C2(Σ). Then (B.3) and (B.6) together give

d2

dε2

∣∣∣
ε=0
FΣ(εψ) = (4π)−

n
2
d

dε

∣∣∣
ε=0

∫

Σ
ψMν

Σ(εψ)e−
|x|2

4 = (4π)−
n
2

∫

Σ
ψLψe−

|x|2
4 .

This completes the proof.

B.3 Graphical solutions of rescaled mean curvature flow

Let u : Σ × [s1, s2] → R be a one-parameter family of smooth functions on Σ. Assume that
‖u(·, s)‖C0 < δ for each s ∈ [s1, s2], so that Σs = graphΣ(u(·, s)) is a smooth hypersurface for
each s. We will write u(s) to mean u(·, s). The next lemma gives an evolution equation for u
when Σs evolves by the rescaled mean curvature flow (RMCF, see Definition 3.20). By Lemma
3.21, this means that the variation field Xs on Σs has

〈
Xs,n

Σs
〉

= −HΣs +
1

2

〈
y,nΣs

〉
. (B.7)

Proposition B.3. The hypersurfaces Σs = graphΣ(u(s)) evolve by RMCF if and only if

∂u

∂s
(x, s) = wu(s)(x)

(
1

2
ηu(s)(x)−Hu(s)(x)

)
.

This is a quasilinear parabolic equation when u(s) has sufficiently small C1 norm for each s.
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Proof. At time s, the variation field and unit normal for Σs are ∂u
∂sn and nu(s) respectively. Thus,

1

w

∂u

∂s
=
〈
n,nu(s)

〉 ∂u
∂s

=

〈
∂u

∂s
n,nu(s)

〉
= −Hu(s) +

1

2

〈
x+ u(x, s)n(x),nu(s)

〉

= −Hu(s) +
1

2
ηu(s),

(B.8)

where the third equality is (B.7). Multiplying by w gives the claimed formula. To see that this is
quasilinear parabolic, use the formula for Hu in Lemma B.1 to write

∂u

∂s
(x, s) = wu(s)

(
1

2
ηu(s) −

w

ν

{
∂qν − ∂xi∂ziν − (∂q∂ziν)∇iu(x, s)− (∂zi∂zjν)∇i∇ju(x, s)

})

=
w2

ν
(∂zi∂zjν)∇i∇ju(x, s) + (terms in x, u,∇u).

Here w, ν and ∂zi∂zjν are all evaluated at (x, u(x, s),∇u(x, s)). Let the right-hand side be Lu.
Then L is evidently quasilinear. Since ν is smooth, the leading coefficients aij = w2

ν (∂zi∂zjν) of
L are symmetric in i and j. When u = 0, the table in Lemma B.1 gives aij = δij , so if u has small
enough C1 norm then the matrix (aij) remains positive definite by the smoothness of w, ν and
∂zi∂zjν. Therefore, L is uniformly elliptic provided that ‖u‖C1 < σ say. It follows that ∂u

∂s = Lu is
quasilinear parabolic, which is the second claim of the proposition.

Corollary B.4. Let u be a graphical solution to RMCF in the above sense. Given σ0 > 0 sufficiently
small, there exists a positive constant C = C(n, σ0) such that if ‖u(s)‖C1 ≤ σ0, then

∣∣∣∣
〈
∂u

∂s
n,nu(s)

〉∣∣∣∣ ≥ C
∣∣∣∣
∂u

∂s

∣∣∣∣ .

Proof. From (B.8), we know that
∣∣∣∣
〈
∂u

∂s
n,nu(s)

〉∣∣∣∣ =
1

|w|

∣∣∣∣
∂u

∂s

∣∣∣∣ ,

where w is evaluated at (x, u(x, s),∇u(x, s)). Since w is smooth and is equal to one when u = 0,
taking σ0 sufficiently small means that the bound ‖u‖C1 ≤ σ0 ensures |w| ≤ C say, where C
depends on σ0 and the form of w, hence on n, σ0. The corollary follows.

Lastly, we need a bound for the area swept out by an almost cylindrical RMCF when it is graphical
over a fixed cylinder. Here Ck is the set of all rotations in Rn+1 of the cylinder Sk√

2k
× Rn−k.

Lemma B.5. Given σ0 > 0 sufficiently small, there exists C = C(n, σ0) so that if Σ ∈ Ck and
u(s) ∈ C1(BR ∩ Σ) is a graphical solution to RMCF for s ∈ [s1, s2] with ‖u(s)‖C1 ≤ σ0, then

∫

BR∩Σ
|u(x, s2)− u(x, s1)|e−

|x|2
4 ≤ C

∫ s2

s1

(∫

Σu(s)

∣∣∣∣
〈y,n〉

2
−H

∣∣∣∣ e−
|y|2

4

)
ds.

Proof. Since Σ is a shrinker by Theorem 4.1, for x ∈ Σ we have 〈x,n〉2 = H =
√

k
2 and so

|y|2 = |x+ u(x)n(x)|2 = |x|2 + u2 + 2u 〈x,n〉 = |x|2 + u2 + 2
√

2ku.
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This together with Proposition B.3 gives (for s ∈ [s1, s2])
∫

BR∩Σ

∣∣∣∣
∂u

∂s

∣∣∣∣ e−
|x|2

4 =

∫

BR∩Σ
|wu(s)|

∣∣∣∣
1

2
ηu(s) −Hu(s)

∣∣∣∣ e−
|y|2

4
+u2+2

√
2ku

4 .

By Lemma B.1, wu and νu are both one when u = 0, so the C1 bound on u(s) yields positive
upper and lower bounds on wu(s), νu(s) depending on n and σ0. It follows that

∫

BR∩Σ

∣∣∣∣
∂u

∂s

∣∣∣∣ e−
|x|2

4 ≤ C
∫

BR∩Σ

∣∣∣∣
1

2
ηu(s) −Hu(s)

∣∣∣∣ e−
|y|2

4

≤ C
∫

Σ

∣∣∣∣
1

2
ηu(s) −Hu(s)

∣∣∣∣ νue−
|y|2

4

= C

∫

Σu(s)

∣∣∣∣
〈y,n〉

2
−H

∣∣∣∣ e−
|y|2

4 .

It follows by Fubini’s theorem that
∫

BR∩Σ
|u(x, s2)− u(x, s1)|e−

|x|2
4 ≤

∫

BR∩Σ

(∫ s2

s1

∣∣∣∣
∂u

∂s
(x, s)

∣∣∣∣ ds
)
e−
|x|2

4

≤ C
∫ s2

s1

(∫

Σu(s)

∣∣∣∣
〈y,n〉

2
−H

∣∣∣∣ e−
|y|2

4

)
ds,

giving the lemma.
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