
Characteristic classes for the differential geometer

Michael Law

How can vector bundles be distinguished from one another? Answers to this question date back
to the 1930s, by the work of Stiefel, Whitney, Pontryagin, Chern and others. They found that the
structure of vector bundles can be encoded in cohomology classes known as characteristic classes,
and these enable us to tell apart non-isomorphic bundles.

An important line of development, due to Chern and Weil in the 1940s, is the construction
of characteristic classes from differential geometry, with de Rham cohomology as the cohomology
theory of choice. Section 1 of this essay introduces this now-called Chern–Weil construction. In
Section 2, we use this procedure to construct the Chern classes of a complex vector bundle, compute
the Chern classes of TCPn, and finally deduce some topological results. In Section 3, we explain
how power series can be used to generate characteristic classes, and give a few examples of classes
arising in this way. This allows us to get a glimpse into index theory which remains an active arena
for research. In particular, we sketch a the proof of the Hirzebruch signature theorem.

A general treatment of characteristic classes requires a decent amount of algebraic topology.
Our avoidance of algebraic topology is somewhat a disservice to the subject; on the other hand,
this makes our exposition accessible to someone who is familiar with differential geometry, but only
knows de Rham cohomology as far as algebraic topology goes (e.g. me at the time of writing). The
main references consulted while learning this material were [Ath18, §2], [MS74] and [Nic07, §8].

1 Chern–Weil theory

1.1 Invariant polynomials

Let G be a Lie group and g its Lie algebra with scalar field K = R or C. Our starting point is the
space Ik(G) which consists of symmetric, multilinear maps

ϕ : g× · · · × g︸ ︷︷ ︸
k times

→ K

which are invariant under the adjoint action of G on g (or simply ad-invariant). This means that
for all X1, . . . , Xk ∈ g and g ∈ G, we have

ϕ(adg(X1), . . . , adg(Xk)) = ϕ(X1, . . . , Xk).

Henceforth, we will assume G is a matrix Lie group for simplicity. Thus adg(X) = gXg−1.

By the polarisation formula for symmetric multilinear maps, every element ϕ ∈ Ik(G) is com-
pletely determined its polarisation Pϕ : g → K, given by Pϕ(X) = ϕ(X, . . . ,X). Note that Pϕ is
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then ad-invariant and homogeneous of degree k, that is

Pϕ(λX) = λkPϕ(X) ∀λ ∈ K.

Conversely, if a function P : g → K is ad-invariant and homogeneous of degree k, then P defines
a unique element ϕ ∈ Ik(G) by setting ϕ(X, . . . ,X) = P (X), and extending to the whole domain
by the polarisation formula. Therefore, we can identify Ik(G) with the space of ad-invariant maps
g → K which are homogeneous of degree k. In either interpretation, Ik(G) is a K-vector space.
Even more, the space

I•(G) =
⊕
k≥0

Ik(G)

is naturally a K-algebra. We refer to elements of I•(G) as invariant polynomials.1

1.2 The Chern–Weil homomorphism

In this subsection, P is a principal G-bundle over a (smooth) manifold M . We will assume P
is defined by a trivialising open cover {Uα} of M and a collection of transition functions {gαβ :
Uα ∩ Uβ → G}. Also assume K = R for simplicity; all of the results below still hold when K = C.

The Chern–Weil construction, which we will detail shortly, assigns to every invariant polynomial
in Ik(G) a cohomology class in H2k(M) using the structure of P . These cohomology classes are
called characteristic classes, and are invariants of P . If two principal bundles yield different char-
acteristic classes, they are not isomorphic. This provides a partial answer to our opening question,
but only for principal bundles. The case for vector bundles will be explained in due course.

Lemma 1.1. Let ϕ ∈ Ik(G) be an invariant polynomial. Let A = {Aα ∈ Ω1(Uα; g)} be a connection
on P with curvature F = {Fα ∈ Ω2(Uα; g)}. Then ϕ(Fα, . . . , Fα) ∈ Ω2k(Uα), and these local 2k-
forms patch together to give a well-defined global 2k-form ϕ(F, . . . , F ) ∈ Ω2k(M).

Proof. Since ϕ and Fα are both multilinear, it follows that ϕ(Fα, . . . , Fα) is multilinear in its 2k
entries. Since ϕ is symmetric and Fα is skew-symmetric, we see that ϕ(Fα, . . . , Fα) is alternating.
Thus ϕ(Fα, . . . , Fα) ∈ Ω2k(Uα), which is the first claim.

Recalling that F ∈ Ω2(M ; adP ), this means that Fα = gαβFβg
−1
αβ on Uα ∩ Uβ . Hence

ϕ(Fα, . . . , Fα) = ϕ(gαβFβg
−1
αβ , . . . , gαβFβg

−1
αβ ) = ϕ(Fβ, . . . , Fβ),

where the ad-invariance of ϕ was used. So ϕ(F, . . . , F ) is a well-defined global 2k-form on M .

The next theorem is the essence of Chern–Weil theory. We write A(P ) for the space of connec-
tions on P . Recall that this is an affine space modelled on Ω1(M ; adP ).

Theorem 1.2 (Chern–Weil theorem). Let ϕ ∈ Ik(G) be an invariant polynomial, and let A,A′ ∈
A(P ) be two connections with respective curvatures FA, FA′ ∈ Ω2(M ; adP ). Then:

(a) ϕ(FA, . . . , FA) is closed in Ω2k(M). Thus it represents a cohomology class in H2k(M).

(b) ϕ(FA
′
, . . . , FA

′
) = ϕ(FA, . . . , FA) in H2k(M).

1Lemma 3.1 shows how these elements are really just polynomials in the traditional sense.
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Proof. It suffices to work with the local curvature forms FAα , FA′α over an open subset Uα ⊂M . To
prove (a), we need two identities. The first one is the Bianchi identity dFAα + [Aα, F

A
α ] = 0. The

second identity is that for all X,X1, . . . , Xk ∈ g we have

ϕ([X,X1], X2, . . . , Xk) + . . .+ ϕ(X1, . . . , Xk−1, [X,Xk]) = 0.

This follows from the fact that ϕ(etXX1e
−tX , . . . , etXXke

−tX) is constant with respect to t by the
ad-invariance of ϕ, and thus

0 =
d

dt

∣∣∣
t=0

ϕ(etXX1e
−tX , . . . , etXXke

−tX)

= ϕ(XX1 −X1X,X2, . . . , Xk) + . . .+ ϕ(X1, . . . , Xk−1, XXk −XkX)

= ϕ([X,X1], X2, . . . , Xk) + . . .+ ϕ(X1, . . . , Xk−1, [X,Xk]).

Using these two identities, we have (using also the Leibniz rule and the multilinearity of ϕ)

dϕ(FAα , . . . , F
A
α ) = ϕ(dFAα , F

A
α , . . . , F

A
α ) + . . .+ ϕ(FAα , . . . , F

A
α , dF

A
α )

= −ϕ([Aα, F
A
α ], FAα , . . . , F

A
α )− . . .− ϕ(FAα , . . . , F

A
α , [Aα, F

A
α ]) = 0,

which is (a). Now we prove (b). We need to show that

ϕ(FA
′
, . . . , FA

′
)− ϕ(FA, . . . , FA) (1)

is exact. To begin, we need another identity which reads as follows. If F1, . . . , Fk−1 are even-degree
forms on Uα, then

k∑
i=1

ϕ(F1, . . . , Fi−1, [Aα, Fi], Fi+1, . . . , Fk) = 0. (2)

(See [Nic07, p318] for the routine derivation.) Now we set Cα = A′α − Aα ∈ Ω1(Uα; g), so that for
each t ∈ [0, 1] we get another local connection 1-form Atα = Aα + tCα. Let F tα ∈ Ω2(Uα; g) be its
curvature. We have

F tα = dAtα +Atα ∧Atα = F tα + t(dCα + [Aα, Cα]) +
t2

2
[Cα, Cα],

so that
d

dt
F tα = dCα + [Aα, Cα] + t[Cα, Cα] = dCα + [Atα, Cα]. (3)

We may now express the quantity (1) as

ϕ(FA
′
, . . . , FA

′
)− ϕ(FA, . . . , FA) =

∫ 1

0

d

dt
ϕ(F tα, . . . , F

t
α) dt = k

∫ 1

0
ϕ(F tα, . . . , F

t
α, dCα + [Atα, Cα]),

(4)

where we have used (3), the Leibniz rule and the symmetry of ϕ. We claim the integrand is exact,
in particular equal to dϕ(F tα, . . . , F

t
α, Cα). Indeed, by the Bianchi identity dF tα = −[Atα, F

t
α] and

(2), we have

dϕ(F tα, . . . , F
t
α, Cα) = ϕ(dF tα, F

t
α, . . . , F

t
α, Cα) + . . .+ ϕ(F tα, . . . , F

t
α, dF

t
α, Cα)

+ ϕ(F tα, . . . , F
t
α, dCα)

= −ϕ([Atα, F
t
α], F tα, . . . , F

t
α, Cα)− . . .− ϕ(F tα, . . . , F

t
α, [A

t
α, F

t
α], Cα)

+ ϕ(F tα, . . . , F
t
α, dCα + [Atα, Cα])− ϕ(F tα, . . . , F

t
α, [A

t
α, Cα])

= ϕ(F tα, . . . , F
t
α, dCα + [Atα, Cα]).
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Putting this back into (4) gives

ϕ(FA
′
, . . . , FA

′
)− ϕ(FA, . . . , FA) = d

∫ 1

0
kϕ(F tα, . . . , F

t
α, dCα + [Atα, Cα]),

so the difference is exact, as required.

Theorem 1.2 implies that given a principal G-bundle P over M , and k ∈ N, there is a map

Ik(G)→ H2k(M) ϕ 7→ ϕ(FA, . . . , FA), (5)

where A is any connection on P . It therefore makes sense to write ϕ(P ) in place of ϕ(FA, . . . , FA).
The map (5) is called the Chern–Weil map. This induces a map

cwP : I•(G)→ Heven(M) :=
⊕
k≥0

H2k(M), ϕ 7→ ϕ(P ),

which is in fact an algebra homomorphism (we will not bother checking this). For this reason we
often refer to the Chern–Weil map as the Chern–Weil homomorphism. Elements in the image of
cwP are called the characteristic classes of P .

Corollary 1.3. The Chern–Weil homomorphism has the following properties.

(a) If P is trivial, then ker cwP = I•(G). In other words, all characteristic classes of P vanish.

(b) If f : M → N is a morphism of smooth manifolds, and P is a principal G-bundle over M ,
then cwF ∗P = F ∗cwP .

Proof. If P is trivial, then we can pick a flat connection A, meaning that FA ≡ 0. For every
ϕ ∈ I•(G), the multilinearity of ϕ gives cwP (ϕ) = ϕ(P ) = ϕ(FA, . . . , FA) ≡ 0, so cwP has no
image. We leave the proof of (b) to the reader.

By (b) above, isomorphic principal bundles over a given smooth manifold have identical char-
acteristic classes (note: the converse is false in general). Thus, characteristic classes give us a way
of telling whether two principal bundles are non-isomorphic.

However, our original goal was to find a way to distinguish vector bundles, so we need to
transplant all these notions to vector bundles. For a complex vector bundle E, the procedure is
as follows: choose a hermitian metric h on E, then form the unitary frame bundle Fh(E) with
respect to h. This is a principal U(r)-bundle. The characteristic classes of E are defined to be
the characteristic classes of Fh(E), which are given by the Chern–Weil construction above. This is
well-defined, because if h′ is another hermitian metric on E, then Fh′(E) ∼= Fh(E) (one constructs
this isomorphism using Gram–Schmidt).

Equivalently, we can choose an affine connection ∇ on E compatible with some (arbitrary)
hermitian metric. Compatibility implies that its curvature F∇ is a u(r)-valued 2-form on M , so for
each ϕ ∈ Ik(U(r)) we have ϕ(F∇, . . . , F∇) ∈ Ω2k(M). This is equivalent to the above method, since
choosing such a ∇ is equivalent to choosing a hermitian metric h on E and a principal connection
on Fh(E). Thus, ϕ(F∇, . . . , F∇) is independent of the choice of ∇, as long as ∇ is compatible with
some hermitian metric. We get a well-defined map

cwE : I•(U(r))→ Heven(M), ϕ 7→ ϕ(E) := ϕ(F∇, . . . , F∇). (6)

The image of cwE defines the characteristic classes of E. From this discussion, we see that Corollary
1.3 generalises to the vector bundle E.
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Remark. If E is a real vector bundle, we can define characteristic classes of E by repeating the
above construction, but using a real metric g on E, and a connection on the orthonormal frame
bundle Fg(E). Equivalently, use an affine connection on E compatible with some metric. If E is an
oriented real vector bundle, look at the oriented orthonormal frame bundle FSg (E) instead. Note:
this means ‘the characteristic classes of E’ depend on whether it is seen as a real or complex vector
bundle, and with or without orientation in the real case.

2 Chern classes

To see the Chern–Weil construction in action, we will introduce the highly important Chern classes
for a complex vector bundle. We will then compute the Chern classes of the tangent bundle of
complex projective space, CPn.

2.1 Defining Chern classes

Let r ∈ N. For X ∈ u(r), consider the Chern polynomial

ct(X) = det

(
1− t

2πi
X

)
,

which is a polynomial in t whose coefficients are functions of the entries ofX. Since A 7→ det(1+A) is
invariant under conjugation in GL(r,C), we have in particular that ct(gXg−1) = ct(X) for g ∈ U(r).
This implies that if we define c1, c2, . . . by

ct(X) =
∑
k≥0

ck(X)tk, (7)

then ck(gXg−1) = ck(X) for each k and each g ∈ U(r). Moreover, ck(X) is a function of k entries
of X. Thus ck(tX) = tkck(X). Since ck(X) ∈ R (see below), all this implies ck ∈ Ik(U(r)). The
Chern classes of a complex vector bundle are obtained by applying the Chern–Weil construction to
ck:

Definition 2.1. Let E be a complex vector bundle of rank r. The Chern classes of E are the
cohomology classes ck(E) = cwE(ck) ∈ H2k(M), where cwE was defined in (6).

We will now find an explicit expression for ck(E). Let us first consider ck(X) where X ∈ u(r).
Thus X is a skew-symmetric and hermitian r × r matrix. We know from linear algebra that X is
unitarily diagonalisable, say by T ∈ U(r). Moreover, X has purely imaginary eigenvalues so that

TXT−1 = diag(λ1, . . . , λr), λj ∈ iR.

Writing σk(x1, . . . , xr) for the k-th elementary symmetric function in x1, . . . , xr, it follows that

ct(X) = ct(TXT
−1) = det

(
diag

(
1− λ1t

2πi
, . . . , 1− λrt

2πi

))
=

(
1− λ1t

2πi

)
· · ·
(

1− λrt

2πi

)
=

r∑
k=0

σk

(
−λ1t

2πi
, . . . ,−λrt

2πi

)
=

r∑
k=0

(
− 1

2πi

)k
σk(λ1, . . . , λr)t

k.
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By (7), we have ck(X) = (− 1
2πi)

kσk(λ1, . . . , λr) where the λj ∈ iR are the eigenvalues of X. Writing
λj = iλ̂j where λ̂j ∈ R, we get ck(X) = (− 1

2π )kσk(λ̂1, . . . , λ̂k) ∈ R as claimed above. Going back to
our vector bundle E, this means

ck(E) =

(
− 1

2πi

)k
σk(λ1(F∇), . . . , λr(F∇)) ∈ H2k(M), (8)

where ∇ is a connection on E compatible with some hermitian metric, and the λj(F∇) are the
eigenvalues of its curvature F∇, which are purely imaginary. In particular,

c1(E) = − 1

2πi
tr(F∇), ck(E) = 0 for k > r. (9)

Of course, the Chern classes ck(E), k ≤ r may also vanish due to dimensionality concerns of the
base manifold M or otherwise (e.g. if E is trivial).

It is often convenient to collect all information about the Chern classes into a single expression.
One way to do this is to look at the Chern polynomial ct(E) =

∑r
k=0 ck(E)tk. However, knowing

ct(E) is equivalent to knowing the total Chern class of E:

Definition 2.2. The total Chern class of a rank r complex vector bundle E is

c(E) = 1 + c1(E) + c2(E) + . . .+ cr(E) ∈ Heven(E).

Namely, ck(E) is the component of c(E) in H2k(E).

2.2 Chern classes of TCPn

In this subsection, we compute the Chern classes of the tangent bundle of CPn, following [MS74,
§14]. The end result is as follows:

Theorem 2.3. The total Chern class of TCPn is c(TCPn) = (1−α)n+1, where α 6= 0 is a generator
for H2(CPn). In fact α = c1(γ

1), the first Chern class of the tautological line bundle over CPn.

The product of a with itself is understood as the wedge product. Thus:

Corollary 2.4. The Chern classes of TCPn are ck(TCPn) = (−1)k
(
n+1
k

)
α∧k, for k = 1, . . . , n.

Since α 6= 0, we conclude from Corollary 1.3 (rather, the version for vector bundles) that:

Corollary 2.5. TCPn is nontrivial.

To prove Theorem 2.3, we start with two simple lemmas concerning the arithmetic of Chern
classes. The first lemma expresses the Chern polynomial of a Whitney sum of vector bundles in
terms of the constitutent Chern polynomials:

Lemma 2.6. If E and E′ are two complex vector bundles over M , then

ct(E ⊕ E′) = ct(E)ct(E
′).
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Proof. Suppose E has rank r and E′ has rank r′. Let h and h′ be hermitian metrics on E and
E′ respectively. Let ∇E be a connection on E compatible with h, and ∇E′ a connection on E′

compatible with h′. Compatibility means their connection 1-forms A,A′ locally take values in u(r)
and u(r′) respectively. Then the block-diagonal 1-forms A ⊕ A′ define a connection ∇E⊕E′ on
E⊕E′, which is compatible with the hermitian metric h⊕h′. Moreover, A⊕A′ locally takes values
in u(r)⊕ u(r′) ⊂ u(r + r′). The curvature 2-forms are related by

F∇E⊕E′ = F∇E ⊕ F∇E′ .

Thus,

ct(E ⊕ E′) = det

(
1r+r′ −

t

2πi
F∇E⊕E′

)
= det

(
1r −

t

2πi
F∇E

)
det

(
1r′ −

t

2πi
F∇E′

)
= ct(E)ct(E

′).

A consequence of the above lemma is that c(E ⊕E′) = c(E)c(E′), since the total Chern class is
just the Chern polynomial evaluated at t = 1.

Lemma 2.7. If E is a complex vector bundle and Ē is its conjugate bundle, then for each k ∈ N
we have

ck(Ē) = (−1)kck(E).

Proof. Let ∇ : Γ(TM) × Γ(E) → Γ(E) be a connection on E compatible with a hermitian metric
h. Then

∇ : Γ(TM)× Γ(Ē)→ Γ(Ē), ∇Xs = ∇Xs,

defines a connection on Ē compatible with the hermitian metric h̄ on Ē. If A is the connection
1-form of ∇, defined locally by

∇X{eα1 , . . . , eαr } = {eα1 , . . . , eαr }Aα(X)

where {eα1 , . . . , eαr } is a local frame for E over an open set Uα ⊂ M , then we see that ∇ has
connection 1-form A. Using the formula F∇ = dA + A ∧ A, we see that the curvature forms are
related by F∇ = F∇. Then by (8) and the fact that F∇ has purely imaginary eigenvalues (by virtue
of taking values in u(r)), we have

ck(Ē) =

(
− 1

2πi

)k
σk(λ1(F∇), . . . , λr(F∇)) =

(
− 1

2πi

)k
σk(λ1(F∇), . . . , λr(F∇))

=

(
− 1

2πi

)k
σk(−λ1(F∇), . . . ,−λr(F∇)) = (−1)kck(E),

as claimed.

Corollary 2.8. If E is a complex vector bundle and E∗ is its dual bundle, then for each k ∈ N we
have

ck(E
∗) = (−1)kck(E).
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Proof. Let h be a hermitian metric on E. For each x ∈ M , define a map fx : Ēx → E∗x by
fx(v) = hx(v, ·). It is routine to check that this induces an isomorphism Ē ∼= E∗. The corollary
follows from Lemma 2.7.

Proof of Theorem 2.3. Let γ1 be the tautological line bundle over CPn, so that the fibre over ` ∈ CPn
is ` ⊂ Cn+1. Let ωn be the orthogonal complement of γ1 in Cn+1. To be specific, for each ` ∈ CPn,
we define ωn` = (γ1` )⊥ = `⊥, where the orthocomplement is taken in Cn+1 using the standard
hermitian inner product. Then ωn ⊕ γ1 = εn+1, the trivial complex bundle over CPn.

We will first show that TCPn ∼= HomC(γ1, ωn). Let ` ∈ CPn. Observe that the graph of any
complex linear map f ∈ HomC(`, `⊥) is a line in Cn+1 close to `. So we can identify a neighbourhood
of ` in CPn with a neighbourhood of zero in HomC(`, `⊥). Taking tangent spaces, we get that
T`CPn ∼= HomC(`, `⊥). (Here we used that HomC(`, `⊥) is a C-vector space, so its tangent spaces
are itself.) As ` ∈ CPn was arbitrary, this induces a bundle isomorphism TCPn ∼= HomC(γ1, ωn) as
was claimed.

Adding the trivial line bundle ε1 over CPn to both sides of this isomorphism, and using the fact
that ε1 ∼= (γ1)∗ ⊗ γ1 ∼= HomC(γ1, γ1), we get

TCPn ⊕ ε1 ∼= HomC(γ1, ωn ⊕ γ1) = HomC(γ1, εn+1) ∼= HomC(γ1,C⊕(n+1)) ∼= [(γ1)∗]⊕(n+1). (10)

Since ε1 is trivial, its total Chern class is 1 (as c1(ε1) vanishes by Corollary 1.3). Now using the
above with Lemma 2.7 and Corollary 2.8, we have

c(TCPn) = c(TCPn ⊕ ε1) = c([(γ1)∗]⊕(n+1)) = c((γ1)∗)n+1 = (1− c1(γ1))n+1.

It remains to show that c1(γ1) 6= 0. To see this, we need to choose a connection on γ1 compatible
with some hermitian metric. There is a natural hermitian metric on γ1 given by restricting the
canonical one on εn+1. Let ∇ be the Chern connection associated to this metric.2 A computation
(see [Liu18, Example 1.2.12]) yields that the curvature of ∇ is locally

F∇ = −
n∑

k,`=1

(1 + |θ|2)δk` − θ̄kθ`
(1 + |θ|2)2

dθk ∧ dθ̄`,

where θ = (θ1, . . . , θn) are local coordinates for CPn, defined in the standard way. This does not
vanish identically, so by (9)

c1(γ
1) = − 1

2πi
tr(F∇) = − 1

2πi
F∇ 6= 0 in H2(CPn). (11)

Here we have used that F∇ takes values in C to get rid of the trace. Finally, by Lemma 2.9 below,
c1(γ

1) generates H2(CPn).

The next lemma was used just now, and will be needed again when we sketch the proof of the
Hirzebruch signature theorem (Theorem 3.9).

2The Chern connection of a holomorphic, hermitian vector bundle (E, h) over a complex manifold is the unique
connection on E which is compatible with h and is holomorphic (in a suitably defined way). Here γ1 inherits a
holomorphic structure from εn+1. There is an explicit formula for the Chern connection in terms of the metric, as
well as its curvature. (Compare with the Levi-Civita connection on a Riemannian manifold and the Koszul formula.)
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Lemma 2.9. For all n, k ∈ N with 2 ≤ k ≤ 2n and k even, the space Hk(CPn) is a one-dimensional
real vector space generated by c1(γ1)k/2, where γ1 is the tautological bundle over CPn. Moreover,
c1(γ

1) is everywhere nonzero and ∫
CPn

c1(γ
1)n = 1. (12)

Proof. See [Dup03, Example A15] for a proof of the first part which is consistent with our definition
of Chern class (i.e. via the Chern–Weil construction). There it is also shown that c1(γ1) is every-
where nonzero. See [Ath18, §2.7] for a proof of (12) when n = 1 (beware of sign conventions).

2.3 Some topological consequences

For us to conclude that TCPn is nontrivial, we only needed one of its Chern classes to be nonzero.
This makes the above computations seem like an overkill since we computed all the Chern classes
of TCPn. The topological results in this subsection should convince the reader that we have not
done this work in vain. The material here is based on [Ath18, §2.8].

In this subsection, we take care to distinguish real vector bundles from complex ones. If E
is a complex vector bundle of rank r, then its realification ER is a real vector bundle of rank 2r.
The transition functions of ER are those of E under the image of GL(r,C) in GL(2r,R). On the
contrary, a real vector bundle ξ complexifies to a complex vector bundle ξC = ξ⊗RC of equal rank.
We write TCPn for the complex tangent bundle of CPn. We need one simple fact:

Lemma 2.10. If E is a complex vector bundle, then (ER)C ∼= E ⊕ E∗ as complex vector bundles.

Proof. If V is a complex vector space, then the map

V ⊗R C→ V ⊕ V , v ⊗R z 7→ (zv, z̄v)

is an isomorphism of complex vector spaces. Applying this to the fibres of E, we get (ER)C ∼= E⊕Ē.
But Ē ∼= E∗ by the argument of Corollary 2.8, so (ER)C ∼= E ⊕ E∗.

The next two theorems are topological consequences of the computations in Section 2.2.

Theorem 2.11. There is no compact smooth (4n+ 1)-dimensional manifold with boundary CP2n.

Proof. For a contradiction, supposeM is a (4n+1)-dimensional smooth manifold with ∂M = CP2n.
Let ι : CP2n ↪→M be the inclusion. By the collar neighbourhood theorem, we have

T∂M ⊕ ε1R ∼= ι∗(TM)

where ε1R is a trivial rank 1 real vector bundle over CP2n. Complexifying, we get

((TCP2n)R)C ⊕ ε1C ∼= (ι∗(TM))C ∼= ι∗(TMC) (13)

as complex vector bundles. Now using Lemma 2.10 and then (10), we have

((TCP2n)R)C ⊕ ε2C ∼= (TCP2n ⊕ T ∗CP2n)⊕ (ε1C ⊕ ε1C)

∼= (TCP2n ⊕ ε1C)⊕ (T ∗CP2n ⊕ (ε1C)∗)

∼= [(γ1)∗]⊕(2n+1) ⊕ (γ1)⊕(2n+1),

9



where γ1 is the tautological line bundle over CP2n. Lemma 2.6 now gives that

c(((TCP2n)R)C) = (1− c1(γ1))2n+1(1 + c1(γ
1))2n+1 = (1− c1(γ1)2)2n+1

=
2n+1∑
k=0

(−1)k
(

2n+ 1

k

)
c1(γ

1)2k.
(14)

Let ω ∈ Ω4n(M) be a closed form representing the cohomology class c2n(TMC). Then by Corollary
1.3, followed by (13), Lemma 2.6 and then (14), the cohomology class of ι∗ω satisfies

[ι∗ω] = ι∗c2n(TMC) = c2n(ι∗(TMC)) = c2n(((TCP2n)R)C) = (−1)n
(

2n+ 1

n

)
c1(γ

1)2n 6= 0.

This means ι∗ω is a top form on CP2n, so by Lemma 2.9 it is everywhere nonvanishing (hence cannot
change sign). Using this, the fact that dω = 0 and Stokes’ theorem, we get

0 =

∫
M
dω =

∫
∂M

ι∗ω 6= 0.

This yields the desired contradiction.

Theorem 2.12. There is no smooth embedding of CP4 into R11.

Proof. Suppose this were false, so ι : CP4 ↪→ R11 is an embedding. Then there is a subbundle ξ of
ε11 := ι∗TR11 which is the normal bundle with respect to this embedding, meaning

(TCP4)R ⊕ ξ ∼= ε11. (15)

Complexifying both sides, and then using Corollary 1.3 and Lemma 2.6, we get

c(((TCP4)R)C)c(ξC) = 1.

Writing α = c1(γ
1) for the first Chern class of the tautological bundle over CP4, and using (14),

this gives

c(ξC) =
1

(1−X2)5
=
∑
k≥0

(−1)k
(
−5

k

)
X2k = 1 + 5X2 + 15X4.

The last equality is because X6, X8, . . . all vanish on CP4 which has real dimension 8. By the
definition of total Chern class, this shows that c4(ξC) = 15X4. But Lemma 2.9 says that 15X4

is nonzero in H8(CP4), so (9) gives that rank(ξC) ≥ 2 as a complex vector bundle. Hence ξ has
real rank ≥ 4. Since ranks are additive under Whitney sums, (TCP4)R ⊕ ξ has real rank at least
8 + 4 = 12. This contradicts (15) since ε11 has rank 11.

3 Generating characteristic classes, and a glimpse of index theory

In this section, we will describe a way of generating characteristic classes from power series in one
variable, which builds on top of the Chern–Weil construction. This gives rise to several important
characteristic classes beyond the Chern classes that are used in profound index theorems connecting
algebraic geometry, algebraic topology and differential geometry. We will only scratch the very
surface of this topic. The treatment in Sections 3.1 and 3.2 is influenced by [Nic07, §8.2].3

3In hindsight, a neater (and more common) approach would use multiplicative sequences; see [MS74, §19]).
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3.1 Characteristic classes from power series: complex vector bundles

Let E be a complex vector bundle of rank r over M . The Chern–Weil map cwE : I•(U(r)) →
Heven(M) defines the characteristic classes of E. We will first explicitly characterise I•(U(r)) to
understand what characteristic classes can arise.

Lemma 3.1. For each k ∈ N, there is a bijective correspondence between Ik(U(r)) and Rksym[x1, . . . , xr],
the space of symmetric polynomials of homogeneous degree k in x1, . . . , xr with real coefficients. The
correspondence is given by

Ik(U(r))←→Rksym[x1, . . . , xr]

ϕ 7→ Pϕ

ϕP ←[ P,

where

Pϕ(x1, . . . , xr) = ϕ


ix1 0

. . .
0 ixr




and
ϕP (X) = P (λ̂1(X), . . . , λ̂r(X)),

where iλ̂1(X), . . . , iλ̂r(X) are the eigenvalues of X ∈ u(r).

We will skip the proof which is rudimentary. (When proving this, it is crucial to use the ad-
invariance of ϕ ∈ Ik(U(r)) and the fact that X ∈ u(r) has purely imaginary eigenvalues.) Now
considering all k at once, the following corollary is immediate.

Corollary 3.2. There is a bijective correspondence between I•(U(r)) and Rsym[[x1, . . . , xr]], the
ring of symmetric formal power series in x1, . . . , xr with real coefficients. The correspondence is
given as in Lemma 3.1 for the degree k part, k ∈ N.

Corollary 3.2 is in fact a special case of the classic Chevalley restriction theorem.

We now describe how a symmetric power series g ∈ Rsym[[x1, . . . , xr]] can be used to obtain a
characteristic class for E. By the fundamental theorem of symmetric polynomials, g can be written

g(x1, . . . , xr) = pg(σ1(x1, . . . , xr), . . . , σr(x1, . . . , xr))

where σj is the j-th elementary symmetric function, and pg is a formal power series. Via the
correspondence of Corollary 3.2, g gets mapped to ϕg ∈ I•(U(r)) which is given by

ϕg(X) = g(λ̂1(X), . . . , λ̂r(X))

= pg(σ1(λ̂1(X), . . . , λ̂r(X)), . . . , σr(λ̂1(X), . . . , λ̂r(X))).

Finally, feeding ϕg into the Chern–Weil map cwE outputs the characteristic class

ϕg(E) = pg(c1(E), . . . , cr(E)) ∈ Heven(M), (16)

where ck(E) = σk(λ̂1(F∇), . . . , λ̂r(F∇)), and ∇ is any hermitian connection on E.4 Note that these
ck(E) differ from the Chern classes of (8), as those ones have an extra factor of (− 1

2π )k. However
4While pg is a formal power series, ϕg(E) as defined in (16) must have finitely many nonzero summands since the

cohomology ring Heven(M) is truncated. Thus ϕg(E) genuinely belongs to Heven(M).
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this normalisation is not important and from here onwards we will assume all Chern classes ck(E)
are the unnormalised ones (i.e. without the (− 1

2π )k factor).

In summary, the procedure described above turns a symmetric power series g into a characteristic
class ϕg(E) for E. Moreover, by (16), ϕg(E) is a polynomial of the Chern classes ck(E).

Example 3.3. Let g(x1, . . . , xr) =
∑

m≥0
sk(x1,...,xr)

k! , where sk = xk1 + . . .+ xkr . We can write

g = r + σ1 +
1

2
(σ21 − 2σ2) +

1

6
(σ31 − 3σ2σ1 + 3σ3) + · · · ,

where σk = σk(x1, . . . , xr). (See Newton’s identities.) The above procedure yields a characteristic
class ϕg(E) by replacing each σk with ck(E). Thus

ϕg(E) = r + c1(E) +
1

2
(c1(E)2 − 2c2(E)) +

1

6
(c1(E)3 − 3c2(E)c1(E) + 3c3(E)) + · · · .

This is called the Chern character of E and is commonly denoted ch(E). In fact

ch(E) = tr exp

(
− 1

2πi
F∇

)
for any hermitian connection ∇ on E.

If f is a real-analytic function of one variable, then g(x1, . . . , xr) = f(x1) · · · f(xr) defines an
element of Rsym[[x1, . . . , xr]]. The above procedure yields a characteristic class ϕg(E), and we call
f the characteristic power series associated to ϕg(E).

Example 3.4. Let

f(x) =
x

1− e−x
= 1 +

x

2
+
∞∑
k=1

(−1)k−1B2k

(2k)!
x2k = 1 +

x

2
+
x2

12
− x4

720
+ · · · ,

where Bk is the k-th Bernoulli number. For g = f(x1) · · · f(xr) ∈ Rsym[[x1, . . . , xr]], we find that

g = 1 +
σ1
2

+
σ21 + σ2

12
+
σ1σ2
24

+ · · · ,

where g and σ1, σ2, . . . are all evaluated at (x1, . . . , xr). Therefore the above procedure yields the
characteristic class

ϕg(E) = 1 +
c1(E)

2
+
c1(E)2 + c2(E)

12
+
c1(E)c2(E)

24
+ · · · ∈ Heven(M).

This is called the Todd class of E and is commonly denoted td(E). We can write td(E) = 1 +∑
k≥1 tdk(E), where tdk(E) ∈ H2k(E). For instance,

td1(E) =
c1(E)

2
, td2(E) =

c1(E)2 + c2(E)

12
, td3(E) =

c1(E)c2(E)

24
.

The Chern character and Todd class are part of the language used to state the Hirzebruch–
Riemann–Roch theorem, which generalises the Riemann–Roch theorem to complex manifolds of ar-
bitrary dimension. This was crucial in the development of the Grothendieck–Hirzebruch–Riemann–
Roch theorem and subsequently the Atiyah–Singer index theorem.

Theorem 3.5 (Hirzebruch–Riemann–Roch). Let E be a holomorphic vector bundle over a compact
complex manifold X. Then the holomorphic Euler characteristic of E satisfies

χ(X,E) =

∫
X

ch(E) td(TX).
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3.2 Characteristic classes from power series: real vector bundles

Let us now assume E is a real vector bundle of rank r over M . By the remark at the end of Section
1, E is assigned characteristic classes by choosing a connection ∇ compatible with some metric on
E, then defining the Chern–Weil map cwE : I•(O(r))→ Heven(M) by

cwE(ϕ) = ϕ(E) := ϕ(F∇, . . . , F∇).

We want a way of coming up with characteristic classes from single-variable formal power series.
This follows similarly in structure to the last subsection, although the analogue of Corollary 3.2 will
look slightly more complicated. Instead of digging through all the details, we will jump straight to
describing the procedure. We then follow this up with two important examples.

Let f be a real-analytic function of one variable. Then g(x1, . . . , xbr/2c) = f(x21) · · · f(x2br/2c)

defines an element of Rsym[[x1, . . . , xbr/2c]]. By the fundamental theorem of symmetric polynomials,
there is a formal power series qg so that

g(x1, . . . , xbr/2c) = qg(σ1(x
2
1, . . . , x

2
br/2c), . . . , σbr/2c(x

2
1, . . . , x

2
br/2c)).

We associate a characteristic class ϕg(E) ∈ Heven(M) to g by setting

ϕg(E) = qg(p1(E), . . . , pbr/2c(E)),

where pk(E) := (−1)kc2k(EC) ∈ H4k(M). We call pk(E) the k-th Pontryagin class of E.

Example 3.6. Let

f(x) =

√
x/2

sinh(
√
x/2)

= 1 +
∑
k≥1

(−1)k
22k−1 − 1

22k−1(2k)!
Bkx

k,

where Bk is again the k-th Bernoulli number. Writing g(x1, . . . , xbr/2c) = f(x21) · · · f(x2br/2c), we
have

g = 1− σ1
24

+
−4σ2 + 7σ21

5760
+
−16σ3 + 44σ2σ1 − 31σ31

967680
+ · · · ,

where g, σk are evaluated at (x21, . . . , x
2
br/2c). Then the characteristic class arising from f according

to the above construction is

ϕg(E) = 1− p1
24

+
−4p2 + 7p21

5760
+
−16p3 + 44p2p1 − 31p31

967680
+ · · · ,

where we have omitted E from writing. We call this the Â-genus of E, denoted by Â(E). Writing
Â(E) = 1 +

∑
k≥1 Âk(E) where Âk(E) ∈ H4k(M), we have for instance

Â1(E) = −p1
24
, Â2(E) =

−4p2 + 7p21
5760

,

and so on.

Example 3.7. Doing the same but starting with

f(x) =

√
x

tanh
√
x

=
∑
k≥0

22kB2k

(2k)!
xk = 1 +

x

3
− x2

45
+

2x3

945
+ · · · , (17)

the characteristic class we obtain is called the L-genus of E, denoted L(E). Likewise decomposing
L(E) = 1 +

∑
k≥1 Lk(E) where Lk(E) ∈ H4k(M), the first few terms turn out to be

L1(E) =
p1
3
, L2(E) =

7p2 − p21
45

, L3(E) =
62p3 − 13p1p2 + 2p31

945
, (18)

where we have again omitted E from writing.

13



3.3 The Hirzebruch signature theorem

There is a wealth of theory on the genera introduced in the previous examples, and it is far beyond
our scope to give a meaningful discussion of the deep results in this area. However, we are able to
sketch a proof of one such result, the Hirzebruch signature theorem. To state it, we must define the
signature of a manifold. Recall that if V is a finite-dimensional real vector space and q : V ×V → R
is a symmetric bilinear form, then the signature of q is the number of positive eigenvalues of q less
the number of negative eigenvalues when considered as a matrix in some basis. This quantity is
basis-independent by Sylvester’s law of inertia.

Definition 3.8. The signature of a compact oriented 4n-dimensional manifold M , denoted σ(M),
is the signature of the symmetric bilinear form

H2n(M,R)×H2n(M,R)→ R, ([α], [β]) 7→
∫
M
α ∧ β.

If dimM is not divisible by 4, then we assign σ(M) = 0.

To state the Hirzebruch signature theorem, we also need to define the quantity L(M) for a
4n-dimensional manifold M by

L(M) =

∫
M
Ln(TM),

where Ln(TM) ∈ H4n(M) was introduced in Example 3.7. If 4 - dimM , we assign L(M) = 0.

Theorem 3.9 (Hirzebruch signature theorem). For any compact oriented manifold M we have

σ(M) = L(M). (19)

Originally proved in 1953 [Hir53], this theorem was used in the (original) proof of Hirzebruch–
Riemann–Roch, i.e. Theorem 3.5. It also enabled Milnor to construct the first exotic 7-spheres
[Mil56]. Yet, it is a surprising result in its own right: it shows that L(M) is always an integer (as
σ(M) is clearly an integer). A priori, L(M) is only known to be a real number.

Our proof sketch of Theorem 3.9 will employ the following lemma, which is immediate from
replicating the proof of Lemma 2.6. Here p(E) is the total Pontryagin class of a real vector bundle
E, defined by p(E) = 1 + p1(E) + . . . + pr(E) if E has rank r. Like the total Chern class, this
encodes all information about the individual Pontryagin classes.

Lemma 3.10. If E and E′ are real vector bundles, then

p(E ⊕ E′) = p(E)p(E′), L(E ⊕ E′) = L(E)L(E′).

Proof sketch for Theorem 3.9. We follow [MS74, Theorem 19.4]. There are two parts.

Part 1 (sketch): reducing the problem. The proof uses oriented cobordism. Two oriented
manifolds N and N ′ of equal dimension are oriented cobordant if there exists an oriented manifold
of one dimension higher whose (oriented) boundary is N + (−N ′), where + denotes disjoint union
and −N ′ is N ′ with the opposite orientation. Oriented cobordism defines an equivalence relation
on the set of oriented manifolds of any given dimension, and we denote by ΩSO

m the set of oriented
cobordism classes of manifolds of dimension m.
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Write ΩSO
∗ = (ΩSO

0 ,ΩSO
1 , . . .). One checks that (ΩSO

∗ ,+,×) is a graded commutative ring under
the operations of disjoint union and Cartesian product. Within each ΩSO

m , the additive identity is
the equivalence class of m-manifolds that are oriented boundaries of (m+ 1)-manifolds. By a result
of Thom (see [MS74, Lemma 19.3]), the signature operator σ satisfies

σ(M +M ′) = σ(M) + σ(M ′), σ(M ×M ′) = σ(M)σ(M ′),

and σ(N) = 0 if N is an additive identity in ΩSO
∗ . Therefore, σ descends to a ring homomorphism

ΩSO
∗ → Z. As ΩSO

∗ can be seen as a graded Z-algebra, tensoring with Q turns σ into an algebra
homomorphism σ : ΩSO

∗ ⊗Z Q→ Q.

Let M be as in the theorem and J = (j1, . . . , jk) a multi-index with
∑
ji = n. Define the

Pontryagin number pJ(M) by

pJ(M) =

∫
M
pj1(TM) ∧ . . . ∧ pjk(TM).

One can show that pJ is an oriented cobordism invariant for each J . Therefore, pJ descends to
a map ΩSO

∗ → R, and by extension ΩSO
∗ ⊗Z Q → R. But L(M) is a polynomial in the pJ(M).

Therefore L also descends to a map ΩSO
∗ ⊗Z Q→ R.

From the last two paragraphs, σ and L both filter through oriented cobordism, hence descend
to maps on ΩSO

∗ ⊗Z Q. Thom also showed that (see [MS74, Theorem 18.9])

ΩSO
∗ ⊗Z Q ∼= Q[CP2,CP4, . . .]

where the right-hand side is a polynomial ring. Therefore, to demonstrate the equality (19) for any
compact oriented manifold M , it suffices to check it for M = CP2n, n ∈ N. Since Lemma 2.9 shows
that σ(CP2n) = 1, we need only check that L(CP2n) = 1 too.

Part 2 (less sketchy): checking L(CP2n) = 1. We begin this step with a general fact. If E
is a complex rank r vector bundle ER is its realification, then

1− p1 + p2 − · · · ± pr = (1− c1 + c2 − · · · ± cr)(1 + c1 + · · ·+ cr),

where the pk are the Pontryagin classes pk(ER), and the c` are the Chern classes c`(E). This can
be verified using the definition of Pontryagin classes (see the line before Example 3.6), and Lemmas
2.6 and 2.7. Using this with E = TCP2n and applying Theorem 2.3, we get

1− p1 + p2 − · · · ± p2n = (1 + α)2n+1(1− α)2n+1 = (1− α2)2n+1,

where α = c1(γ
1) and pk means pk((TCP2n)R). This implies the total Pontryagin class of (TCP2n)R

is given by
p((TCP2n)R) = (1 + α2)2n+1. (20)

We will use this to compute L(TCP2n) and thereby L(CP2n). If E is a real vector bundle over CP2n

with p(E) = 1 + α2, then by the vanishing of p2(E), p3(E), . . ., we get

L(E) =
α

tanhα
.

(Compare (17) and (18) to convince oneself of this.) By Lemma 3.10, E⊕(2n+1) has

p(E⊕(2n+1)) = (1 + α2)2n+1, L(E⊕(2n+1)) =
( α

tanhα

)2n+1
.
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Since the L-genus depends only on the Pontryagin classes, and (TCP2n)R and E⊕(2n+1) have the
same Pontryagin classes by (20) and the above equation, they must also have the same L-genera.
Thus

L((TCP2n)R) =
( α

tanhα

)2n+1
. (21)

Since Ln((TCP2n)R) is the component of this belonging to H4n(CP2n), it is the α2n term in the
power series expansion of (21). Now Lemma 2.9 says

∫
CP2n α2n = 1, so L(CP2n) is simply the

coefficient of α2n. We will compute this by substituting α for a complex variable z and applying
Cauchy’s integral formula, so that

L(CP2n) =
1

2πi

∮
C

( z

tanh z

)2n+1 dz

z2n+1
=

1

2πi

∮
C

dz

(tanh z)2n+1
,

where C is a small contour about the origin in C. Substituting u = tanh z and dz = du/(1− u2) =
(1 + u2 + u4 + . . .)du, this gives

L(CP2n) =
1

2πi

∮
tanhC

1 + u2 + u4 + · · ·
u2n+1

du = 1,

where the second equality is by the residue theorem. This is what we needed to show.
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